Abstract

Formation and interaction of few-cycle solitons in a lithium niobate ridge waveguide are numerically investigated. The solitons are created through a cascaded phase-mismatched second-harmonic generation process, which induces a dominant self-defocusing Kerr-like nonlinearity on the pump pulse. The inherent material self-focusing Kerr nonlinearity is overcome over a wide wavelength range, and self-defocusing solitons are supported from 1100 to 1900 nm, covering the whole communication band. Single cycle self-compressed solitons and supercontinuum generation spanning 1.3 octaves are observed when pumped with femtosecond nanojoule pulses at 1550 nm. The waveguide is not periodically poled, as quasi-phase-matching would lead to detrimental nonlinear effects impeding few-cycle soliton formation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, H. Suzuki, Appl. Phys. Lett. 88, 061101 (2006).
    [CrossRef]
  2. M. Levenius, V. Pasiskevicius, F. Laurell, K. Gallo, Opt. Express 19, 4121 (2011).
    [CrossRef]
  3. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, H. Vanherzeele, Opt. Lett. 17, 28 (1992).
    [CrossRef]
  4. X. Liu, L.-J. Qian, F. W. Wise, Opt. Lett. 24, 1777 (1999).
    [CrossRef]
  5. S. Ashihara, J. Nishina, T. Shimura, K. Kuroda, J. Opt. Soc. Am. B 19, 2505 (2002).
    [CrossRef]
  6. J. Moses, F. W. Wise, Opt. Lett. 31, 1881 (2006).
    [CrossRef]
  7. B. Zhou, A. Chong, F. Wise, M. Bache, Phys. Rev. Lett. 109, 043902 (2012).
    [CrossRef]
  8. C. Langrock, M. Fejer, I. Hartl, M. E. Fermann, Opt. Lett. 32, 2478 (2007).
    [CrossRef]
  9. C. Phillips, C. Langrock, J. Pelc, M. Fejer, J. Jiang, M. E. Fermann, I. Hartl, Opt. Lett. 36, 3912 (2011).
    [CrossRef]
  10. M. Bache, O. Bang, J. Moses, F. W. Wise, Opt. Lett. 32, 2490 (2007).
    [CrossRef]
  11. J. Moses, F. W. Wise, Phys. Rev. Lett. 97, 073903 (2006).
    [CrossRef]
  12. M. Asobe, Y. Nishida, O. Tadanaga, H. Miyazawa, H. Suzuki, IEICE Trans. Electron. E88-C, 335 (2005).
    [CrossRef]
  13. T. Umeki, O. Tadanaga, M. Asobe, IEEE J. Quantum Electron. 46, 1206 (2010).
    [CrossRef]
  14. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2010).
  15. M. Bache, J. Opt. Soc. Am. B 26, 460 (2009).
    [CrossRef]
  16. G. Agrawal, Nonlinear Fiber Optics (Academic, 2013).
  17. M. Bache, J. Moses, F. W. Wise, J. Opt. Soc. Am. B 24, 2752 (2007).
    [CrossRef]
  18. M. Bache, O. Bang, W. Krolikowski, J. Moses, F. W. Wise, Opt. Express 16, 3273 (2008).
    [CrossRef]
  19. H. Guo, X. Zeng, B. Zhou, M. Bache, J. Opt. Soc. Am. B 30, 494 (2013).
    [CrossRef]
  20. H. Guo, X. Zeng, M. Bache, “Generalized nonlinear wave equation in frequency domain,” arXiv:1301.1473 (2013).
  21. M. Bache, O. Bang, B. B. Zhou, J. Moses, F. W. Wise, Phys. Rev. A 82, 063806 (2010).
    [CrossRef]
  22. K. Tai, N. Bekki, A. Hasegawa, Opt. Lett. 13, 392 (1988).
    [CrossRef]
  23. J. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]

2013

2012

B. Zhou, A. Chong, F. Wise, M. Bache, Phys. Rev. Lett. 109, 043902 (2012).
[CrossRef]

2011

2010

T. Umeki, O. Tadanaga, M. Asobe, IEEE J. Quantum Electron. 46, 1206 (2010).
[CrossRef]

M. Bache, O. Bang, B. B. Zhou, J. Moses, F. W. Wise, Phys. Rev. A 82, 063806 (2010).
[CrossRef]

2009

2008

2007

2006

J. Moses, F. W. Wise, Opt. Lett. 31, 1881 (2006).
[CrossRef]

J. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

J. Moses, F. W. Wise, Phys. Rev. Lett. 97, 073903 (2006).
[CrossRef]

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, H. Suzuki, Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

2005

M. Asobe, Y. Nishida, O. Tadanaga, H. Miyazawa, H. Suzuki, IEICE Trans. Electron. E88-C, 335 (2005).
[CrossRef]

2002

1999

1992

1988

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics (Academic, 2013).

Ashihara, S.

Asobe, M.

T. Umeki, O. Tadanaga, M. Asobe, IEEE J. Quantum Electron. 46, 1206 (2010).
[CrossRef]

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, H. Suzuki, Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

M. Asobe, Y. Nishida, O. Tadanaga, H. Miyazawa, H. Suzuki, IEICE Trans. Electron. E88-C, 335 (2005).
[CrossRef]

Bache, M.

H. Guo, X. Zeng, B. Zhou, M. Bache, J. Opt. Soc. Am. B 30, 494 (2013).
[CrossRef]

B. Zhou, A. Chong, F. Wise, M. Bache, Phys. Rev. Lett. 109, 043902 (2012).
[CrossRef]

M. Bache, O. Bang, B. B. Zhou, J. Moses, F. W. Wise, Phys. Rev. A 82, 063806 (2010).
[CrossRef]

M. Bache, J. Opt. Soc. Am. B 26, 460 (2009).
[CrossRef]

M. Bache, O. Bang, W. Krolikowski, J. Moses, F. W. Wise, Opt. Express 16, 3273 (2008).
[CrossRef]

M. Bache, J. Moses, F. W. Wise, J. Opt. Soc. Am. B 24, 2752 (2007).
[CrossRef]

M. Bache, O. Bang, J. Moses, F. W. Wise, Opt. Lett. 32, 2490 (2007).
[CrossRef]

H. Guo, X. Zeng, M. Bache, “Generalized nonlinear wave equation in frequency domain,” arXiv:1301.1473 (2013).

Bang, O.

Bekki, N.

Chong, A.

B. Zhou, A. Chong, F. Wise, M. Bache, Phys. Rev. Lett. 109, 043902 (2012).
[CrossRef]

Coen, S.

J. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

DeSalvo, R.

Dudley, J.

J. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Fejer, M.

Fermann, M. E.

Gallo, K.

Genty, G.

J. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Guo, H.

H. Guo, X. Zeng, B. Zhou, M. Bache, J. Opt. Soc. Am. B 30, 494 (2013).
[CrossRef]

H. Guo, X. Zeng, M. Bache, “Generalized nonlinear wave equation in frequency domain,” arXiv:1301.1473 (2013).

Hagan, D. J.

Hartl, I.

Hasegawa, A.

Jiang, J.

Krolikowski, W.

Kuroda, K.

Langrock, C.

Laurell, F.

Levenius, M.

Liu, X.

Magari, K.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, H. Suzuki, Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

Miyazawa, H.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, H. Suzuki, Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

M. Asobe, Y. Nishida, O. Tadanaga, H. Miyazawa, H. Suzuki, IEICE Trans. Electron. E88-C, 335 (2005).
[CrossRef]

Moses, J.

Nishida, Y.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, H. Suzuki, Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

M. Asobe, Y. Nishida, O. Tadanaga, H. Miyazawa, H. Suzuki, IEICE Trans. Electron. E88-C, 335 (2005).
[CrossRef]

Nishina, J.

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2010).

Pasiskevicius, V.

Pelc, J.

Phillips, C.

Qian, L.-J.

Sheik-Bahae, M.

Shimura, T.

Stegeman, G.

Suzuki, H.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, H. Suzuki, Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

M. Asobe, Y. Nishida, O. Tadanaga, H. Miyazawa, H. Suzuki, IEICE Trans. Electron. E88-C, 335 (2005).
[CrossRef]

Tadanaga, O.

T. Umeki, O. Tadanaga, M. Asobe, IEEE J. Quantum Electron. 46, 1206 (2010).
[CrossRef]

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, H. Suzuki, Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

M. Asobe, Y. Nishida, O. Tadanaga, H. Miyazawa, H. Suzuki, IEICE Trans. Electron. E88-C, 335 (2005).
[CrossRef]

Tai, K.

Umeki, T.

T. Umeki, O. Tadanaga, M. Asobe, IEEE J. Quantum Electron. 46, 1206 (2010).
[CrossRef]

Van Stryland, E. W.

Vanherzeele, H.

Wise, F.

B. Zhou, A. Chong, F. Wise, M. Bache, Phys. Rev. Lett. 109, 043902 (2012).
[CrossRef]

Wise, F. W.

Yanagawa, T.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, H. Suzuki, Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

Zeng, X.

H. Guo, X. Zeng, B. Zhou, M. Bache, J. Opt. Soc. Am. B 30, 494 (2013).
[CrossRef]

H. Guo, X. Zeng, M. Bache, “Generalized nonlinear wave equation in frequency domain,” arXiv:1301.1473 (2013).

Zhou, B.

H. Guo, X. Zeng, B. Zhou, M. Bache, J. Opt. Soc. Am. B 30, 494 (2013).
[CrossRef]

B. Zhou, A. Chong, F. Wise, M. Bache, Phys. Rev. Lett. 109, 043902 (2012).
[CrossRef]

Zhou, B. B.

M. Bache, O. Bang, B. B. Zhou, J. Moses, F. W. Wise, Phys. Rev. A 82, 063806 (2010).
[CrossRef]

Appl. Phys. Lett.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, H. Suzuki, Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

IEEE J. Quantum Electron.

T. Umeki, O. Tadanaga, M. Asobe, IEEE J. Quantum Electron. 46, 1206 (2010).
[CrossRef]

IEICE Trans. Electron.

M. Asobe, Y. Nishida, O. Tadanaga, H. Miyazawa, H. Suzuki, IEICE Trans. Electron. E88-C, 335 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. A

M. Bache, O. Bang, B. B. Zhou, J. Moses, F. W. Wise, Phys. Rev. A 82, 063806 (2010).
[CrossRef]

Phys. Rev. Lett.

B. Zhou, A. Chong, F. Wise, M. Bache, Phys. Rev. Lett. 109, 043902 (2012).
[CrossRef]

J. Moses, F. W. Wise, Phys. Rev. Lett. 97, 073903 (2006).
[CrossRef]

Rev. Mod. Phys.

J. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Other

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2010).

G. Agrawal, Nonlinear Fiber Optics (Academic, 2013).

H. Guo, X. Zeng, M. Bache, “Generalized nonlinear wave equation in frequency domain,” arXiv:1301.1473 (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Diagram of cascaded quadratic soliton compression in a LN ridge waveguide. Fundamental mode (TM00) distributions at different wavelengths (1, 2, and 3 μm) are also shown, with structure marked as S-1. c axis is the optic axis of the crystal, i.e., the crystallographic z-axis.

Fig. 2.
Fig. 2.

Dispersion properties of the LN ridge waveguide. (a) Effective RIs of eigenmodes, in the waveguide structure S-1. (b) Fundamental mode effective RIs of different waveguide structures; inserts in (a) and (b) show normalized effective RIs in which the material dispersion is removed. (c) GVD profiles of the fundamental mode in different waveguide structures. Detailed waveguide sizes are shown as insert.

Fig. 3.
Fig. 3.

Nonlinearities in the LN ridge waveguide with structure S-1. (a) Effective mode area corresponding to the cascaded SHG process and Kerr SPM process in the fundamental mode TM00. (b) The nonlinear factor of the cascaded quadratic nonlinearity as well as the Kerr nonlinearity, a compression window is shown from 1100 to 1900 nm in which a dominant self-defocusing nonlinearity is achieved. (c) Equivalently, the phase mismatch is below the critical value Δkc marking the onset of a self-focusing nonlinearity, and it is nonresonant as it stays above the nonlocal resonant area (marked area).

Fig. 4.
Fig. 4.

Numerical simulation of soliton self-compression in the LN ridge waveguide with structure S-1, pumped at 1550 nm. The pump pulse has a FWHM of 50 fs, P=200kW giving a pulse energy of 10 nJ; γcasc=17.6km1W1 and γKerr=9.9km1W1, giving N=3.7. (a) Pulse spectrum at the input and the output; (b) pulse spectral evolution (in dB scale); (c) pulse temporal evolution with the self-compression position marked by the white dashed line (scaled to the peak power of the input pulse); (d) physical real-valued electric field amplitude of the self-compressed pulse.

Fig. 5.
Fig. 5.

Supercontinuum generation in the waveguide S-1 pumped at 1550 nm. The pump pulse has 30-nJ energy, 150-fs FWHM; the soliton order is N=11.1. (a) Pulse supercontinuum spectrum at the input and the output (the red dashed line marks the 10dB range of the output spectrum, the green dashed line marks the 20dB range); (b) pulse spectral evolution.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Aeff,casc(ω1)=(dxdy|UTM00(ω2)|2)(dxdy|UTM00(ω1)|2)2(dxdyUTM00*(ω2)UTM002(ω1))2,

Metrics