Abstract

Recently there has been a growing interest in microphotonic integrated optical gyroscopes. Here, we analyze the effect of resonator losses on the rotational sensitivity of a coupled resonator optical waveguide (CROW) gyroscope in comparison to a single passive resonator gyroscope of the same size. We show that the CROW gyro offers a superior sensitivity only for very low propagation losses. Moreover, the single ring resonator gyro is found to have a sensitivity that is stable over wide range of resonator losses as well as boasting greater sensitivities than the CROW gyro for propagation losses in the resonators exceeding 101dB/cm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, Adv. Opt. Photon. 2, 370 (2010).
  2. V. M. N. Passaro, C. de Tullio, B. Troia, M. La Notte, G. Giannoccaro, and F. De Leonardis, Sensors 12, 15558 (2012).
    [CrossRef]
  3. F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, Laser Photonics Rev. 6, 74 (2012).
    [CrossRef]
  4. J. Scheuer and A. Yariv, Phys. Rev. Lett. 96, 053901 (2006).
    [CrossRef]
  5. M. A. Terrel, M. J. F. Digonnet, and S. Fan, J. Lightwave Technol. 27, 47 (2009).
    [CrossRef]
  6. M. Terrel, M. J. F. Digonnet, and S. Fan, Laser Photonics Rev. 3, 452 (2009).
    [CrossRef]
  7. J. R. E. Toland, Z. A. Kaston, C. Sorrentino, and C. P. Search, Opt. Lett. 36, 1221 (2011).
    [CrossRef]
  8. C. Sorrentino, J. Toland, and C. P. Search, Opt. Express 20, 354 (2012).
    [CrossRef]
  9. B. Z. Steinberg, J. Scheuer, and A. Boag, J. Opt. Soc. Am. B 24, 1216 (2007).
    [CrossRef]
  10. R. Novitski, B. Z. Steinberg, and J. Scheuer, Phys. Rev. A 85, 023813 (2012).
    [CrossRef]
  11. D. Hah and D. Zhang, Opt. Express 18, 18200 (2010).
    [CrossRef]
  12. J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, Opt. Express 12, 90 (2004).
    [CrossRef]
  13. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, J. Opt. Soc. Am. B 21, 1665 (2004).
    [CrossRef]
  14. M. A. Guillen-Torres, E. Cretu, N. A. F. Jaeger, and L. Chrostowski, J. Lightwave Technol. 30, 1802 (2012).
    [CrossRef]
  15. J. Scheuer, Opt. Lett. 34, 1630 (2009).
    [CrossRef]

2012

V. M. N. Passaro, C. de Tullio, B. Troia, M. La Notte, G. Giannoccaro, and F. De Leonardis, Sensors 12, 15558 (2012).
[CrossRef]

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, Laser Photonics Rev. 6, 74 (2012).
[CrossRef]

C. Sorrentino, J. Toland, and C. P. Search, Opt. Express 20, 354 (2012).
[CrossRef]

R. Novitski, B. Z. Steinberg, and J. Scheuer, Phys. Rev. A 85, 023813 (2012).
[CrossRef]

M. A. Guillen-Torres, E. Cretu, N. A. F. Jaeger, and L. Chrostowski, J. Lightwave Technol. 30, 1802 (2012).
[CrossRef]

2011

2010

2009

2007

2006

J. Scheuer and A. Yariv, Phys. Rev. Lett. 96, 053901 (2006).
[CrossRef]

2004

Armenise, M. N.

Boag, A.

Campanella, C. E.

Canciamilla, A.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, Laser Photonics Rev. 6, 74 (2012).
[CrossRef]

Chrostowski, L.

Ciminelli, C.

Cretu, E.

De Leonardis, F.

V. M. N. Passaro, C. de Tullio, B. Troia, M. La Notte, G. Giannoccaro, and F. De Leonardis, Sensors 12, 15558 (2012).
[CrossRef]

de Tullio, C.

V. M. N. Passaro, C. de Tullio, B. Troia, M. La Notte, G. Giannoccaro, and F. De Leonardis, Sensors 12, 15558 (2012).
[CrossRef]

Dell’Olio, F.

Digonnet, M. J. F.

M. A. Terrel, M. J. F. Digonnet, and S. Fan, J. Lightwave Technol. 27, 47 (2009).
[CrossRef]

M. Terrel, M. J. F. Digonnet, and S. Fan, Laser Photonics Rev. 3, 452 (2009).
[CrossRef]

Fan, S.

M. Terrel, M. J. F. Digonnet, and S. Fan, Laser Photonics Rev. 3, 452 (2009).
[CrossRef]

M. A. Terrel, M. J. F. Digonnet, and S. Fan, J. Lightwave Technol. 27, 47 (2009).
[CrossRef]

Ferrari, C.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, Laser Photonics Rev. 6, 74 (2012).
[CrossRef]

Giannoccaro, G.

V. M. N. Passaro, C. de Tullio, B. Troia, M. La Notte, G. Giannoccaro, and F. De Leonardis, Sensors 12, 15558 (2012).
[CrossRef]

Guillen-Torres, M. A.

Hah, D.

Huang, Y.

Jaeger, N. A. F.

Kaston, Z. A.

La Notte, M.

V. M. N. Passaro, C. de Tullio, B. Troia, M. La Notte, G. Giannoccaro, and F. De Leonardis, Sensors 12, 15558 (2012).
[CrossRef]

Melloni, A.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, Laser Photonics Rev. 6, 74 (2012).
[CrossRef]

Mookherjea, S.

Morichetti, F.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, Laser Photonics Rev. 6, 74 (2012).
[CrossRef]

Novitski, R.

R. Novitski, B. Z. Steinberg, and J. Scheuer, Phys. Rev. A 85, 023813 (2012).
[CrossRef]

Paloczi, G. T.

Passaro, V. M. N.

V. M. N. Passaro, C. de Tullio, B. Troia, M. La Notte, G. Giannoccaro, and F. De Leonardis, Sensors 12, 15558 (2012).
[CrossRef]

Poon, J. K. S.

Scheuer, J.

Search, C. P.

Sorrentino, C.

Steinberg, B. Z.

R. Novitski, B. Z. Steinberg, and J. Scheuer, Phys. Rev. A 85, 023813 (2012).
[CrossRef]

B. Z. Steinberg, J. Scheuer, and A. Boag, J. Opt. Soc. Am. B 24, 1216 (2007).
[CrossRef]

Terrel, M.

M. Terrel, M. J. F. Digonnet, and S. Fan, Laser Photonics Rev. 3, 452 (2009).
[CrossRef]

Terrel, M. A.

Toland, J.

Toland, J. R. E.

Troia, B.

V. M. N. Passaro, C. de Tullio, B. Troia, M. La Notte, G. Giannoccaro, and F. De Leonardis, Sensors 12, 15558 (2012).
[CrossRef]

Xu, Y.

Yariv, A.

Zhang, D.

Adv. Opt. Photon.

J. Lightwave Technol.

J. Opt. Soc. Am. B

Laser Photonics Rev.

M. Terrel, M. J. F. Digonnet, and S. Fan, Laser Photonics Rev. 3, 452 (2009).
[CrossRef]

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, Laser Photonics Rev. 6, 74 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

R. Novitski, B. Z. Steinberg, and J. Scheuer, Phys. Rev. A 85, 023813 (2012).
[CrossRef]

Phys. Rev. Lett.

J. Scheuer and A. Yariv, Phys. Rev. Lett. 96, 053901 (2006).
[CrossRef]

Sensors

V. M. N. Passaro, C. de Tullio, B. Troia, M. La Notte, G. Giannoccaro, and F. De Leonardis, Sensors 12, 15558 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

SEM image of a CROW fabricated on SOI, showing the relationship between the resonators and transfer matrices defined in text. sin and sout are the input and transmitted fields such that the transmission is T(ϕS)=|sout/sin|2. Based on the propagation direction of sout, the number of resonators must be odd due to phase matching.

Fig. 2.
Fig. 2.

(a) Ωmin versus N for lossless resonators and (b) Ωmin versus propagation loss, α, for N=35. Inset shows the ratio of Ωmin with and without losses for the CROW gyro. Solid lines represent CROWs while dashed lines are Ωmin of a single ring resonator with circumference equal to that of the CROW, N(2πR) both for κ=0.1. The CROW radii are R=100μm (blue lines), 300 μm (red lines), 500 μm (green lines).

Fig. 3.
Fig. 3.

(a) Ωmin versus N for lossless resonators and (b) Ωmin versus α for N=17 constrained to an area of 4mm2 (black lines), 20mm2 (purple lines), and 50mm2 (brown lines). Inset shows the ratio of Ωmin with and without losses for the CROW gyro. Solid lines are CROW gyros and dashed lines are single resonators of equal area both for κ=0.1.

Fig. 4.
Fig. 4.

Transmission T(ϕS) of an N=7 gyro for α=0 (blue line), α=0.1 (green line), 0.5 (purple line), 0.9 (red line), and 2.0dB/cm (teal line). Crosses represent the location of the maximum scale factor. Here, κ=0.1 and R=300μm.

Fig. 5.
Fig. 5.

Ωmin versus N for α=0.06dB/cm confined to an area of (a) 4mm2 and (b) 50mm2 with κ=0.1 (blue lines), 0.35 (green lines), 0.5 (teal lines), 0.65 (purple lines), 0.8 (yellow lines), and 0.95 (black lines).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Uin=iκ(1κeei(ϕp+ϕS)ei(ϕp+ϕS)ei(ϕp+ϕS)1κeei(ϕp+ϕS)),
Uout=1κ(1κeei(ϕp+ϕS)ei(ϕp+ϕS)ei(ϕp+ϕS)1κeei(ϕp+ϕS))×(1κ111κ),
UCW=iκ(1κei(ϕp+ϕS)ei(ϕp+ϕS)ei(ϕp+ϕS)1κei(ϕp+ϕS)),
UCCW=iκ(1κei(ϕpϕS)ei(ϕpϕS)ei(ϕpϕS)1κei(ϕpϕS)).
TN=Uout(UCCWUCW)MUCCWUin=(T11T12T21T22),
S=1PindPoutdΩ=dTdΩ=(2πωR2c2)(dTdϕS),
Ωmin=1Smax(2eiD+4kBTRLiD2+RIN)Δf,

Metrics