Abstract

A 16-element optical phased array integrated on chip is presented for achieving two-dimensional (2D) optical beam steering. The device is fabricated on the silicon-on-insulator platform with a 250 nm silicon device layer. Steering is achieved via a combination of wavelength tuning and thermo-optic phase shifting with a switching power of Pπ=20mW per channel. Using a silicon waveguide grating with a polycrystalline silicon overlay enables narrow far field beam widths while mitigating the precise etching needed for conventional shallow etch gratings. Using this system, 2D steering across a 20°×15° field of view is achieved with a sidelobe level better than 10 dB and with beam widths of 1.2°×0.5°.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, Proc. IEEE 97, 1078 (2009).
    [CrossRef]
  2. B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, IEEE J. Sel. Top. Quantum Electron. 12, 1618 (2006).
    [CrossRef]
  3. D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, Appl. Phys. Lett. 99, 051104 (2011).
    [CrossRef]
  4. K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, Opt. Lett. 34, 1477 (2009).
    [CrossRef]
  5. J. K. Doylend, M. Heck, J. T. Bovington, J. D. Peters, L. Coldren, and J. Bowers, Opt. Express 19, 21595 (2011).
    [CrossRef]
  6. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
    [CrossRef]
  7. P. Cheben, S. Janz, B. Lamontagne, and D.-X. Xu, “Optical off-chip interconnects in multichannel planar waveguide devices,” U.S. patent application2005/0141808 A1 (December21, 2004).
  8. R. Halir, P. Cheben, S. Janz, D.-X. Xu, Í. Molina-Fernández, and J. G. Wangüemert-Pérez, Opt. Lett. 34, 1408 (2009).
    [CrossRef]
  9. X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, Appl. Phys. Lett. 101, 031109 (2012).
    [CrossRef]
  10. R. Halir, P. Cheben, J. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and Í. Molina-Fernández, Opt. Lett. 35, 3243 (2010).
    [CrossRef]
  11. X. Chen, K. Xu, Z. Cheng, C. K. Fung, and H. K. Tsang, Opt. Lett. 37, 3483 (2012).
    [CrossRef]
  12. X. Chen and H. K. Tsang, Opt. Lett. 36, 796 (2011).
    [CrossRef]
  13. D. Kwong, J. Covey, A. Hosseini, Y. Zhang, X. Xu, and R. T. Chen, Opt. Express 20, 21722 (2012).
    [CrossRef]

2013

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

2012

2011

2010

2009

2006

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, IEEE J. Sel. Top. Quantum Electron. 12, 1618 (2006).
[CrossRef]

Baets, R.

Bedard, D.

Bogaerts, W.

Bos, P. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, Proc. IEEE 97, 1078 (2009).
[CrossRef]

Bovington, J. T.

Bowers, J.

Cheben, P.

Chen, R. T.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, Appl. Phys. Lett. 101, 031109 (2012).
[CrossRef]

D. Kwong, J. Covey, A. Hosseini, Y. Zhang, X. Xu, and R. T. Chen, Opt. Express 20, 21722 (2012).
[CrossRef]

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, Appl. Phys. Lett. 99, 051104 (2011).
[CrossRef]

Chen, X.

Cheng, Z.

Coldren, L.

Covey, J.

D. Kwong, J. Covey, A. Hosseini, Y. Zhang, X. Xu, and R. T. Chen, Opt. Express 20, 21722 (2012).
[CrossRef]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, Appl. Phys. Lett. 101, 031109 (2012).
[CrossRef]

Densmore, A.

Dimitropoulos, D.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, IEEE J. Sel. Top. Quantum Electron. 12, 1618 (2006).
[CrossRef]

Doylend, J. K.

Escuti, M. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, Proc. IEEE 97, 1078 (2009).
[CrossRef]

Fathpour, S.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, IEEE J. Sel. Top. Quantum Electron. 12, 1618 (2006).
[CrossRef]

Fung, C. K.

Halir, R.

Heck, M.

Heikenfeld, J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, Proc. IEEE 97, 1078 (2009).
[CrossRef]

Hosseini, A.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, Appl. Phys. Lett. 101, 031109 (2012).
[CrossRef]

D. Kwong, J. Covey, A. Hosseini, Y. Zhang, X. Xu, and R. T. Chen, Opt. Express 20, 21722 (2012).
[CrossRef]

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, Appl. Phys. Lett. 99, 051104 (2011).
[CrossRef]

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

Houdré, R.

Jágerská, J.

Jalali, B.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, IEEE J. Sel. Top. Quantum Electron. 12, 1618 (2006).
[CrossRef]

Janz, S.

Kwong, D.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, Appl. Phys. Lett. 101, 031109 (2012).
[CrossRef]

D. Kwong, J. Covey, A. Hosseini, Y. Zhang, X. Xu, and R. T. Chen, Opt. Express 20, 21722 (2012).
[CrossRef]

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, Appl. Phys. Lett. 99, 051104 (2011).
[CrossRef]

Lamontagne, B.

P. Cheben, S. Janz, B. Lamontagne, and D.-X. Xu, “Optical off-chip interconnects in multichannel planar waveguide devices,” U.S. patent application2005/0141808 A1 (December21, 2004).

Lapointe, J.

Le Thomas, N.

Ma, R.

McManamon, P. F.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, Proc. IEEE 97, 1078 (2009).
[CrossRef]

Molina-Fernández, Í.

Peters, J. D.

Raghunathan, V.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, IEEE J. Sel. Top. Quantum Electron. 12, 1618 (2006).
[CrossRef]

Schmid, J.

Serati, S.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, Proc. IEEE 97, 1078 (2009).
[CrossRef]

Shori, R.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, IEEE J. Sel. Top. Quantum Electron. 12, 1618 (2006).
[CrossRef]

Stafsudd, O.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, IEEE J. Sel. Top. Quantum Electron. 12, 1618 (2006).
[CrossRef]

Subbaraman, H.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, Appl. Phys. Lett. 101, 031109 (2012).
[CrossRef]

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

Tsang, H. K.

Van Acoleyen, K.

Wangüemert-Pérez, J. G.

Watson, E. A.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, Proc. IEEE 97, 1078 (2009).
[CrossRef]

Watts, M. R.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

Xie, H.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, Proc. IEEE 97, 1078 (2009).
[CrossRef]

Xu, D.-X.

Xu, K.

Xu, X.

D. Kwong, J. Covey, A. Hosseini, Y. Zhang, X. Xu, and R. T. Chen, Opt. Express 20, 21722 (2012).
[CrossRef]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, Appl. Phys. Lett. 101, 031109 (2012).
[CrossRef]

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

Zhang, Y.

D. Kwong, J. Covey, A. Hosseini, Y. Zhang, X. Xu, and R. T. Chen, Opt. Express 20, 21722 (2012).
[CrossRef]

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, Appl. Phys. Lett. 99, 051104 (2011).
[CrossRef]

Appl. Phys. Lett.

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, Appl. Phys. Lett. 99, 051104 (2011).
[CrossRef]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, Appl. Phys. Lett. 101, 031109 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, IEEE J. Sel. Top. Quantum Electron. 12, 1618 (2006).
[CrossRef]

Nature

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. IEEE

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, Proc. IEEE 97, 1078 (2009).
[CrossRef]

Other

P. Cheben, S. Janz, B. Lamontagne, and D.-X. Xu, “Optical off-chip interconnects in multichannel planar waveguide devices,” U.S. patent application2005/0141808 A1 (December21, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic of the overall device with (b) wideband subwavelength grating coupler and (c) waveguide grating with polysilicon overlay and oxide etch stop layer. Note that the metal phase shifters are directly over the silicon waveguide separated by 1 μm of oxide. Horizontal (longitudinal) steering refers to beam steering in the xy(xz) plane and the steering angle is represented by ψ(θ).

Fig. 2.
Fig. 2.

(a) Top-down SEM of the SWN grating coupler. Insets show magnified view (top right) and cross-sectional view with oxide cladding (bottom left). (b) SEM of a single waveguide grating with polysilicon overlay and oxide etch stop layer. (c) Microscope picture of the completed device. (d) Picture of the wire-bonded device on the chip carrier plugged into the breadboard.

Fig. 3.
Fig. 3.

(a) Coupling efficiency of the wideband subwavelength grating coupler. (b) Schematic of the testing setup used to achieve 2D beam steering using the OPA. (c) Photograph of the testing setup showing the razor blade to block reflected light from entering the IR camera.

Fig. 4.
Fig. 4.

(a) IR images of the single waveguide grating with polysilicon overlay as the wavelength is tuned from 1480 to 1580 nm. (b) Longitudinal beam profiles in θ of the steered beams. (c) Steering angle and FWHM beam width of the steered beam.

Fig. 5.
Fig. 5.

(a) MZI transmission spectrum vs. electrical power to TO phase shifters. (b) Oscilloscope screenshot of MZI.

Fig. 6.
Fig. 6.

(a) OPA far field and (b) line profile without thermal tuning. (c) OPA far field and (d) line profile after thermal tuning.

Fig. 7.
Fig. 7.

(a) 2D beam steering around a 20°×15° field of view with SLL better than 10 dB and (b) beam widths of 1.2°×0.5°.

Fig. 8.
Fig. 8.

(a) 2D beam steering around a 20°×15° field of view with SLL better than 10 dB. (b) Far field radiation pattern and (c) beam profiles of one of the steered beams showing beam widths of 1.2°×0.5°.

Metrics