Abstract

The transverse magnetic (TM) polarized hybrid modes formed as a consequence of coupling between Tamm plasmon polariton (TM-TPP) mode and surface plasmon polariton (SPP) mode exhibit interesting dispersive features for realizing a highly sensitive and accurate surface plasmon resonance (SPR) sensor. We found that the TM-TPP modes, formed at the interface of distributed Bragg reflector and metal, are strongly dispersive as compared to SPP modes at optical frequencies. This causes an appreciably narrow interaction bandwidth between TM-TPP and SPP modes, which leads to highly accurate sensing. In addition, appropriate tailoring of dispersion characteristics of TM-TPP as well as SPP modes could ensure high sensitivity of a novel SPR platform. By suitably designing the Au/TiO2/SiO2-based geometry, we propose a TM-TPP/SPP hybrid-mode sensor and achieve a sensitivity 900nm/RIU with high detection accuracy (30μm1) for analyte refractive indices varying between 1.330 and 1.345 in 600–700 nm wavelength range. The possibility to achieve desired dispersive behavior in any spectral band makes the sensing configuration an extremely attractive candidate to design sensors depending on the availability of optical sources.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Pillarik and J. Homola, Opt. Express 17, 16505 (2009).
    [Crossref]
  2. J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
    [Crossref]
  3. Z. Yu and S. Fan, Opt. Express 19, 10029 (2011).
    [Crossref]
  4. R. Yang, R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, Opt. Lett. 35, 649 (2010).
    [Crossref]
  5. V. N. Konopsky and E. V. Alieva, Opt. Lett. 34, 479 (2009).
    [Crossref]
  6. M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. V. Kavokin, and I. Shelykh, Phys. Rev. B 76, 165415 (2007).
    [Crossref]
  7. C. E. Little, R. Anufriev, I. Iorsh, M. Kaliteevski, R. Abram, and S. Brand, Phys. Rev. B 86, 235425 (2012).
    [Crossref]
  8. B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, Appl. Phys. Lett. 103, 061112 (2013).
    [Crossref]
  9. K. Leosson, S. Shayestehaminzadeh, T. K. Tryggvason, A. Kossoy, and B. Agnarsson, Opt. Lett. 37, 4026 (2012).
    [Crossref]
  10. A. V. Baryshev, A. M. Merzlikin, and M. Inoue, J. Phys. D 46, 125107 (2013).
    [Crossref]
  11. P. Yeh, A. Yariv, and C. S. Hong, J. Opt. Soc. Am. 67, 423 (1977).
    [Crossref]
  12. B. R. West and A. S. Helmy, J. Opt. Soc. Am. B 23, 1207 (2006).
    [Crossref]
  13. T. Toyoda and M. Yabe, J. Phys. D 16, L251 (1983).
    [Crossref]
  14. G. Ghosh and M. Endo, J. Lightwave Technol. 12, 1338 (1994).
    [Crossref]
  15. R. Jha, J. Villatoro, G. Badènes, and V. Pruneri, Opt. Lett. 34, 617 (2009).
    [Crossref]
  16. R. Jha and A. K. Sharma, Opt. Lett. 34, 749 (2009).
    [Crossref]
  17. R. Verma, B. D. Gupta, and R. Jha, Sens. Actuators B 160, 623 (2011).
    [Crossref]
  18. P. Bhatia and B. D. Gupta, Appl. Opt. 50, 2032 (2011).
    [Crossref]

2013 (2)

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, Appl. Phys. Lett. 103, 061112 (2013).
[Crossref]

A. V. Baryshev, A. M. Merzlikin, and M. Inoue, J. Phys. D 46, 125107 (2013).
[Crossref]

2012 (2)

C. E. Little, R. Anufriev, I. Iorsh, M. Kaliteevski, R. Abram, and S. Brand, Phys. Rev. B 86, 235425 (2012).
[Crossref]

K. Leosson, S. Shayestehaminzadeh, T. K. Tryggvason, A. Kossoy, and B. Agnarsson, Opt. Lett. 37, 4026 (2012).
[Crossref]

2011 (3)

2010 (1)

2009 (4)

2007 (1)

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. V. Kavokin, and I. Shelykh, Phys. Rev. B 76, 165415 (2007).
[Crossref]

2006 (1)

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[Crossref]

1994 (1)

G. Ghosh and M. Endo, J. Lightwave Technol. 12, 1338 (1994).
[Crossref]

1983 (1)

T. Toyoda and M. Yabe, J. Phys. D 16, L251 (1983).
[Crossref]

1977 (1)

Abram, R.

C. E. Little, R. Anufriev, I. Iorsh, M. Kaliteevski, R. Abram, and S. Brand, Phys. Rev. B 86, 235425 (2012).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. V. Kavokin, and I. Shelykh, Phys. Rev. B 76, 165415 (2007).
[Crossref]

Abushagur, M. A. G.

Afinogenov, B. I.

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, Appl. Phys. Lett. 103, 061112 (2013).
[Crossref]

Agnarsson, B.

Alieva, E. V.

Anufriev, R.

C. E. Little, R. Anufriev, I. Iorsh, M. Kaliteevski, R. Abram, and S. Brand, Phys. Rev. B 86, 235425 (2012).
[Crossref]

Badènes, G.

Baryshev, A. V.

A. V. Baryshev, A. M. Merzlikin, and M. Inoue, J. Phys. D 46, 125107 (2013).
[Crossref]

Bessonov, V. O.

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, Appl. Phys. Lett. 103, 061112 (2013).
[Crossref]

Bhatia, P.

Brand, S.

C. E. Little, R. Anufriev, I. Iorsh, M. Kaliteevski, R. Abram, and S. Brand, Phys. Rev. B 86, 235425 (2012).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. V. Kavokin, and I. Shelykh, Phys. Rev. B 76, 165415 (2007).
[Crossref]

Chamberlain, J.

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. V. Kavokin, and I. Shelykh, Phys. Rev. B 76, 165415 (2007).
[Crossref]

Endo, M.

G. Ghosh and M. Endo, J. Lightwave Technol. 12, 1338 (1994).
[Crossref]

Fan, S.

Fedyanin, A. A.

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, Appl. Phys. Lett. 103, 061112 (2013).
[Crossref]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[Crossref]

Ghosh, G.

G. Ghosh and M. Endo, J. Lightwave Technol. 12, 1338 (1994).
[Crossref]

Gupta, B. D.

R. Verma, B. D. Gupta, and R. Jha, Sens. Actuators B 160, 623 (2011).
[Crossref]

P. Bhatia and B. D. Gupta, Appl. Opt. 50, 2032 (2011).
[Crossref]

Helmy, A. S.

Homola, J.

M. Pillarik and J. Homola, Opt. Express 17, 16505 (2009).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[Crossref]

Hong, C. S.

Inoue, M.

A. V. Baryshev, A. M. Merzlikin, and M. Inoue, J. Phys. D 46, 125107 (2013).
[Crossref]

Iorsh, I.

C. E. Little, R. Anufriev, I. Iorsh, M. Kaliteevski, R. Abram, and S. Brand, Phys. Rev. B 86, 235425 (2012).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. V. Kavokin, and I. Shelykh, Phys. Rev. B 76, 165415 (2007).
[Crossref]

Jha, R.

Kaliteevski, M.

C. E. Little, R. Anufriev, I. Iorsh, M. Kaliteevski, R. Abram, and S. Brand, Phys. Rev. B 86, 235425 (2012).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. V. Kavokin, and I. Shelykh, Phys. Rev. B 76, 165415 (2007).
[Crossref]

Kavokin, A. V.

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. V. Kavokin, and I. Shelykh, Phys. Rev. B 76, 165415 (2007).
[Crossref]

Konopsky, V. N.

Kossoy, A.

Leosson, K.

Little, C. E.

C. E. Little, R. Anufriev, I. Iorsh, M. Kaliteevski, R. Abram, and S. Brand, Phys. Rev. B 86, 235425 (2012).
[Crossref]

Lu, Z.

Merzlikin, A. M.

A. V. Baryshev, A. M. Merzlikin, and M. Inoue, J. Phys. D 46, 125107 (2013).
[Crossref]

Nikulin, A. A.

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, Appl. Phys. Lett. 103, 061112 (2013).
[Crossref]

Pillarik, M.

Pruneri, V.

Sharma, A. K.

Shayestehaminzadeh, S.

Shelykh, I.

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. V. Kavokin, and I. Shelykh, Phys. Rev. B 76, 165415 (2007).
[Crossref]

Toyoda, T.

T. Toyoda and M. Yabe, J. Phys. D 16, L251 (1983).
[Crossref]

Tryggvason, T. K.

Verma, R.

R. Verma, B. D. Gupta, and R. Jha, Sens. Actuators B 160, 623 (2011).
[Crossref]

Villatoro, J.

Wahsheh, R. A.

West, B. R.

Yabe, M.

T. Toyoda and M. Yabe, J. Phys. D 16, L251 (1983).
[Crossref]

Yang, R.

Yariv, A.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[Crossref]

Yeh, P.

Yu, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, Appl. Phys. Lett. 103, 061112 (2013).
[Crossref]

J. Lightwave Technol. (1)

G. Ghosh and M. Endo, J. Lightwave Technol. 12, 1338 (1994).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. D (2)

T. Toyoda and M. Yabe, J. Phys. D 16, L251 (1983).
[Crossref]

A. V. Baryshev, A. M. Merzlikin, and M. Inoue, J. Phys. D 46, 125107 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. B (2)

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. V. Kavokin, and I. Shelykh, Phys. Rev. B 76, 165415 (2007).
[Crossref]

C. E. Little, R. Anufriev, I. Iorsh, M. Kaliteevski, R. Abram, and S. Brand, Phys. Rev. B 86, 235425 (2012).
[Crossref]

Sens. Actuators B (2)

R. Verma, B. D. Gupta, and R. Jha, Sens. Actuators B 160, 623 (2011).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of TM-TPP/SPP hybrid mode sensing configuration comprising a thin metal layer sandwiched between DBR region and analyte region; prism is used for TM-TPP excitation. (b) Qualitative mode-field distribution of TM-TPP/SPP hybrid mode superimposed on structure in Fig. 1(a).

Fig. 2.
Fig. 2.

Variation of real part of mode effective index (neff) of TM-TPP modes in Au/TiO2/SiO2 geometry as a function of d1 and d2 when λ=632.8nm obtained by solving Eq. (1) (color bar represents mode effective index or neff).

Fig. 3.
Fig. 3.

Variation of real part of mode effective index (neff) of TM-TPP modes, SPP modes, and hybrid modes for different metal thicknesses as a function of wavelength;δλ is shift in λres when na changes by 0.001. Inset: zoomed-in view of neff curve for TM-TPP mode and SPP mode (for na=1.330 & na=1.331) at the intersection point.

Fig. 4.
Fig. 4.

Variation of real part of GVD of TM-TPP modes, SPP modes, and hybrid modes (for dm=30,40,50,60nm) as a function of wavelength. Inset: variation of real part of group index of TM-TPP modes, SPP modes, and hybrid modes.

Fig. 5.
Fig. 5.

Variation of sensitivity (Sn) of TiO2/SiO2/Au for TM-TPP/SPP hybrid-mode sensor as a function of analyte index (na). Here, d1=72nm, d2=285nm, and dm=60nm. Inset: variation of detection accuracy (DA) as a function of na.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

αeiKTMΛATMBTMeiKTMΛATM+BTM=1,
αeiKTMΛATMBTMeiKTMΛATM+BTM=tanh(kmdm)+γ1+γtanh(kmdm),

Metrics