Abstract

In an effort to reduce the cost of sensing systems and make them more compact and flexible, Brillouin scattering has been demonstrated as a useful tool, especially for distributed temperature and strain sensing (DTSS), with a resolution of a few centimeters over several tens of kilometers of fiber. However, sensing is limited by the Brillouin frequency shift’s sensitivity to these parameters, which are of the order of 1.3MHz/°C and of 0.05MHz/με for standard fiber. In this Letter, we demonstrate a new and simple technique for enhancing the sensitivity of sensing by using higher-orders Stokes shifts with stimulated Brillouin scattering (SBS). By this method, we multiply the sensitivity of the sensor by the number of the Stokes order used, enhanced by six-fold, therefore reaching a sensitivity of 7MHz/°C, and potentially 0.30MHz/με. To do this, we place the test fiber within a cavity to produce a frequency comb. Based on a reference multiorder SBS source for heterodyning, this system should provide a new distributed sensing technology with significantly better resolution at a potentially lower cost than currently available DTSS systems.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
    [CrossRef]
  2. S. Le Floch and P. Cambon, Opt. Commun. 219, 395 (2003).
    [CrossRef]
  3. V. Lambin-Iezzi, S. Loranger, M. Saad, and R. Kashyap, J. Non-Cryst. Solids 359, 65 (2013).
    [CrossRef]
  4. E. J. Miller, M. D. Skeldon, and R. W. Boyd, Appl. Opt. 28, 92 (1989).
    [CrossRef]
  5. G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, Nat. Phys. 8, 203 (2012).
    [CrossRef]
  6. M. D. Pelusi, A. Fu, and B. J. Eggleton, Opt. Express 18, 9435 (2010).
    [CrossRef]
  7. M. González-Herráez, K.-Y. Song, and L. Thévenaz, Appl. Phys. Lett. 87, 081113 (2005).
    [CrossRef]
  8. S. Loranger, V. Lambin-Iezzi, and R. Kashyap, Opt. Express 20, 19455 (2012).
    [CrossRef]
  9. X. Bao, D. J. Webb, and D. A. Jackson, Opt. Lett. 19, 141 (1994).
    [CrossRef]
  10. K. Hotate and S. S. Ong, IEEE Photon. Technol. Lett. 15, 272 (2003).
    [CrossRef]
  11. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, J. Opt. Soc. Am. B 22, 1321 (2005).
    [CrossRef]
  12. T. Horiguchi and M. Tateda, Opt. Lett. 14, 408 (1989).
    [CrossRef]
  13. J. Dakin, D. Pratt, G. Bibby, and J. Ross, Electron. Lett. 21, 569 (1985).
    [CrossRef]
  14. M. Froggatt and J. Moore, Appl. Opt. 37, 1735 (1998).
    [CrossRef]
  15. Y. Sano and T. Yoshino, J. Lightwave Technol. 21, 132 (2003).
    [CrossRef]
  16. W. Li, X. Bao, Y. Li, and L. Chen, Opt. Express 16, 21616 (2008).
    [CrossRef]
  17. F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, Meas. Sci. Technol. 20, 025202 (2009).
    [CrossRef]
  18. Y. Dong, H. Zhang, L. Chen, and X. Bao, Appl. Opt. 51, 1229 (2012).
    [CrossRef]
  19. X. Bao and L. Chen, Sensors 11, 4152 (2011).
    [CrossRef]
  20. Y. Song, L. Zhan, J. Ji, Y. Su, Q. Ye, and Y. Xia, Opt. Lett. 30, 486 (2005).
    [CrossRef]
  21. Z. Zhang, L. Zhan, and Y. Xia, Opt. Express 15, 9731 (2007).
    [CrossRef]
  22. Y. Lu, Z. Qin, P. Lu, D. Zhou, L. Chen, and X. Bao, IEEE Photon. Technol. Lett. 25, 1050 (2013).
    [CrossRef]
  23. S. M. Maughan, H. H. Kee, and T. P. Newson, Meas. Sci. Technol. 12, 834 (2001).
    [CrossRef]

2013

V. Lambin-Iezzi, S. Loranger, M. Saad, and R. Kashyap, J. Non-Cryst. Solids 359, 65 (2013).
[CrossRef]

Y. Lu, Z. Qin, P. Lu, D. Zhou, L. Chen, and X. Bao, IEEE Photon. Technol. Lett. 25, 1050 (2013).
[CrossRef]

2012

2011

X. Bao and L. Chen, Sensors 11, 4152 (2011).
[CrossRef]

2010

2009

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, Meas. Sci. Technol. 20, 025202 (2009).
[CrossRef]

2008

2007

2005

2003

Y. Sano and T. Yoshino, J. Lightwave Technol. 21, 132 (2003).
[CrossRef]

K. Hotate and S. S. Ong, IEEE Photon. Technol. Lett. 15, 272 (2003).
[CrossRef]

S. Le Floch and P. Cambon, Opt. Commun. 219, 395 (2003).
[CrossRef]

2001

S. M. Maughan, H. H. Kee, and T. P. Newson, Meas. Sci. Technol. 12, 834 (2001).
[CrossRef]

1998

1997

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

1994

1989

1985

J. Dakin, D. Pratt, G. Bibby, and J. Ross, Electron. Lett. 21, 569 (1985).
[CrossRef]

Alahbabi, M. N.

Bahl, G.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, Nat. Phys. 8, 203 (2012).
[CrossRef]

Bao, X.

Y. Lu, Z. Qin, P. Lu, D. Zhou, L. Chen, and X. Bao, IEEE Photon. Technol. Lett. 25, 1050 (2013).
[CrossRef]

Y. Dong, H. Zhang, L. Chen, and X. Bao, Appl. Opt. 51, 1229 (2012).
[CrossRef]

X. Bao and L. Chen, Sensors 11, 4152 (2011).
[CrossRef]

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, Meas. Sci. Technol. 20, 025202 (2009).
[CrossRef]

W. Li, X. Bao, Y. Li, and L. Chen, Opt. Express 16, 21616 (2008).
[CrossRef]

X. Bao, D. J. Webb, and D. A. Jackson, Opt. Lett. 19, 141 (1994).
[CrossRef]

Bibby, G.

J. Dakin, D. Pratt, G. Bibby, and J. Ross, Electron. Lett. 21, 569 (1985).
[CrossRef]

Boyd, R. W.

Cambon, P.

S. Le Floch and P. Cambon, Opt. Commun. 219, 395 (2003).
[CrossRef]

Carmon, T.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, Nat. Phys. 8, 203 (2012).
[CrossRef]

Chen, L.

Y. Lu, Z. Qin, P. Lu, D. Zhou, L. Chen, and X. Bao, IEEE Photon. Technol. Lett. 25, 1050 (2013).
[CrossRef]

Y. Dong, H. Zhang, L. Chen, and X. Bao, Appl. Opt. 51, 1229 (2012).
[CrossRef]

X. Bao and L. Chen, Sensors 11, 4152 (2011).
[CrossRef]

W. Li, X. Bao, Y. Li, and L. Chen, Opt. Express 16, 21616 (2008).
[CrossRef]

Cho, Y. T.

Dakin, J.

J. Dakin, D. Pratt, G. Bibby, and J. Ross, Electron. Lett. 21, 569 (1985).
[CrossRef]

Dong, Y.

Dou, R.

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, Meas. Sci. Technol. 20, 025202 (2009).
[CrossRef]

Eggleton, B. J.

Froggatt, M.

Fu, A.

González-Herráez, M.

M. González-Herráez, K.-Y. Song, and L. Thévenaz, Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

Horiguchi, T.

Hotate, K.

K. Hotate and S. S. Ong, IEEE Photon. Technol. Lett. 15, 272 (2003).
[CrossRef]

Jackson, D. A.

Ji, J.

Kashyap, R.

V. Lambin-Iezzi, S. Loranger, M. Saad, and R. Kashyap, J. Non-Cryst. Solids 359, 65 (2013).
[CrossRef]

S. Loranger, V. Lambin-Iezzi, and R. Kashyap, Opt. Express 20, 19455 (2012).
[CrossRef]

Kee, H. H.

S. M. Maughan, H. H. Kee, and T. P. Newson, Meas. Sci. Technol. 12, 834 (2001).
[CrossRef]

Lambin-Iezzi, V.

V. Lambin-Iezzi, S. Loranger, M. Saad, and R. Kashyap, J. Non-Cryst. Solids 359, 65 (2013).
[CrossRef]

S. Loranger, V. Lambin-Iezzi, and R. Kashyap, Opt. Express 20, 19455 (2012).
[CrossRef]

Le Floch, S.

S. Le Floch and P. Cambon, Opt. Commun. 219, 395 (2003).
[CrossRef]

Li, W.

Li, Y.

Loranger, S.

V. Lambin-Iezzi, S. Loranger, M. Saad, and R. Kashyap, J. Non-Cryst. Solids 359, 65 (2013).
[CrossRef]

S. Loranger, V. Lambin-Iezzi, and R. Kashyap, Opt. Express 20, 19455 (2012).
[CrossRef]

Lu, P.

Y. Lu, Z. Qin, P. Lu, D. Zhou, L. Chen, and X. Bao, IEEE Photon. Technol. Lett. 25, 1050 (2013).
[CrossRef]

Lu, Y.

Y. Lu, Z. Qin, P. Lu, D. Zhou, L. Chen, and X. Bao, IEEE Photon. Technol. Lett. 25, 1050 (2013).
[CrossRef]

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, Meas. Sci. Technol. 20, 025202 (2009).
[CrossRef]

Marquardt, F.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, Nat. Phys. 8, 203 (2012).
[CrossRef]

Maughan, S. M.

S. M. Maughan, H. H. Kee, and T. P. Newson, Meas. Sci. Technol. 12, 834 (2001).
[CrossRef]

Miller, E. J.

Moore, J.

Newson, T. P.

M. N. Alahbabi, Y. T. Cho, and T. P. Newson, J. Opt. Soc. Am. B 22, 1321 (2005).
[CrossRef]

S. M. Maughan, H. H. Kee, and T. P. Newson, Meas. Sci. Technol. 12, 834 (2001).
[CrossRef]

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Ong, S. S.

K. Hotate and S. S. Ong, IEEE Photon. Technol. Lett. 15, 272 (2003).
[CrossRef]

Pelusi, M. D.

Pratt, D.

J. Dakin, D. Pratt, G. Bibby, and J. Ross, Electron. Lett. 21, 569 (1985).
[CrossRef]

Qin, Z.

Y. Lu, Z. Qin, P. Lu, D. Zhou, L. Chen, and X. Bao, IEEE Photon. Technol. Lett. 25, 1050 (2013).
[CrossRef]

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Ross, J.

J. Dakin, D. Pratt, G. Bibby, and J. Ross, Electron. Lett. 21, 569 (1985).
[CrossRef]

Saad, M.

V. Lambin-Iezzi, S. Loranger, M. Saad, and R. Kashyap, J. Non-Cryst. Solids 359, 65 (2013).
[CrossRef]

Sano, Y.

Skeldon, M. D.

Song, K.-Y.

M. González-Herráez, K.-Y. Song, and L. Thévenaz, Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

Song, Y.

Su, Y.

Tateda, M.

Thevenaz, L.

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Thévenaz, L.

M. González-Herráez, K.-Y. Song, and L. Thévenaz, Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

Tomes, M.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, Nat. Phys. 8, 203 (2012).
[CrossRef]

Wang, F.

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, Meas. Sci. Technol. 20, 025202 (2009).
[CrossRef]

Webb, D. J.

Xia, Y.

Ye, Q.

Yoshino, T.

Zhan, L.

Zhang, H.

Zhang, X.

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, Meas. Sci. Technol. 20, 025202 (2009).
[CrossRef]

Zhang, Z.

Zhou, D.

Y. Lu, Z. Qin, P. Lu, D. Zhou, L. Chen, and X. Bao, IEEE Photon. Technol. Lett. 25, 1050 (2013).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. González-Herráez, K.-Y. Song, and L. Thévenaz, Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

Electron. Lett.

J. Dakin, D. Pratt, G. Bibby, and J. Ross, Electron. Lett. 21, 569 (1985).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Hotate and S. S. Ong, IEEE Photon. Technol. Lett. 15, 272 (2003).
[CrossRef]

Y. Lu, Z. Qin, P. Lu, D. Zhou, L. Chen, and X. Bao, IEEE Photon. Technol. Lett. 25, 1050 (2013).
[CrossRef]

J. Lightwave Technol.

Y. Sano and T. Yoshino, J. Lightwave Technol. 21, 132 (2003).
[CrossRef]

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

J. Non-Cryst. Solids

V. Lambin-Iezzi, S. Loranger, M. Saad, and R. Kashyap, J. Non-Cryst. Solids 359, 65 (2013).
[CrossRef]

J. Opt. Soc. Am. B

Meas. Sci. Technol.

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, Meas. Sci. Technol. 20, 025202 (2009).
[CrossRef]

S. M. Maughan, H. H. Kee, and T. P. Newson, Meas. Sci. Technol. 12, 834 (2001).
[CrossRef]

Nat. Phys.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, Nat. Phys. 8, 203 (2012).
[CrossRef]

Opt. Commun.

S. Le Floch and P. Cambon, Opt. Commun. 219, 395 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Sensors

X. Bao and L. Chen, Sensors 11, 4152 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Measurement setup for temperature sensitivity characterization. Two 20GHz frequency comb generators are used, one as the sensing cavity with the test fiber and a second as a reference cavity. To observe the frequency shift, we measure the beats between the test and the reference lasers depending on temperature difference between the sensing (in a temperature tunable oven/cooler) and reference (in a temperature controlled environment) fibers.

Fig. 2.
Fig. 2.

Results showing sensitivity increase with increasing Stokes order. (a) Beat frequency spectra for different temperatures, showing the increase in the total frequency shift with higher Stokes orders (the curves are intentionally displaced vertically to allow easy viewing). A minimum temperature offset of around 27.9°C was needed to resolve the beat frequency spectra from DC due to filtering at the detector. Indeed, two different types of fiber could instead have been used to allowed a sufficient frequency difference at ΔT=0°C. (b) Sensitivity plot of Brillouin frequency shift with temperature showing the slope (sensitivity) increasing for different observed Stokes orders.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

νB=2npVA/λp.
νB(T,ε)=νB0+CT(TT0)+Cε(εε0),
fcomb=2νB(T,ε)+4νB(T,ε)++2nνB(T,ε).
νbeat=νref(T0,ε0)νtest(T,ε)=[C2,TC4,TC2n,TC2,εC4,εC2n,ε][TT0εε0],
ν2,refν2,sens=(ν4,refν4,sens)/2=(ν6,refν6,sens)/3.

Metrics