Abstract

Gaussian profile fiber Bragg gratings exhibit narrow-bandwidth transmission peaks with significant group delay at the edge of their photonic bandgap. We demonstrate group delays ranging from 0.2 to 5.6 ns from a 1.2 cm structure. Simulations suggest such a device would be capable of enhancing the field intensity of incoming light by a factor of 800. Enhancement is confirmed by photothermally induced bistability of these peaks even at sub-milliwatt input powers with as much as a four-fold difference in the magnitude of their responses. The strong field intensities of these modes could significantly enhance desired nonlinear optical responses in fiber, provided the impact of absorption is addressed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
    [CrossRef]
  2. C. R. Giles, J. Lightwave Technol. 15, 1391 (1997).
    [CrossRef]
  3. J. Khurgin, Phys. Rev. A 62, 013821 (2000).
    [CrossRef]
  4. G. P. Agrawal and S. Radic, IEEE Photon. Technol. Lett. 6, 995 (1994).
    [CrossRef]
  5. R. W. Boyd, J. Opt. Soc. Am. B 28, A38 (2011).
    [CrossRef]
  6. V. Mizrahi and J. Sipe, J. Lightwave Technol. 11, 1513 (1993).
    [CrossRef]
  7. J. E. Sipe, L. Poladian, and C. M. de Sterke, J. Opt. Soc. Am. A 11, 1307 (1994).
    [CrossRef]
  8. L. Poladian, Opt. Lett. 22, 1571 (1997).
    [CrossRef]
  9. I. V. Kabakova, T. Walsh, C. M. de Sterke, and B. J. Eggleton, J. Opt. Soc. Am. B 27, 1343 (2010).
    [CrossRef]
  10. H. Wen, M. Terrel, S. Fan, and M. Digonnet, IEEE Sens. J. 12, 156 (2012).
    [CrossRef]
  11. I. C. M. Littler, T. Grujic, and B. J. Eggleton, Appl. Opt. 45, 4679 (2006).
    [CrossRef]
  12. H. G. Winful, J. H. Marburger, and E. Garmire, Appl. Phys. Lett. 35, 379 (1979).
    [CrossRef]
  13. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).
  14. D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, IEEE Photon. Technol. Lett. 16, 1864 (2004).
    [CrossRef]
  15. A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. Krauss, Appl. Phys. Lett. 90, 261107 (2007).
    [CrossRef]
  16. I. V. Kabakova, B. Corcoran, J. A. Bolger, C. M. de Sterke, and B. J. Eggleton, Opt. Express 17, 5083 (2009).
    [CrossRef]
  17. I. V. Kabakova, C. M. de Sterke, and B. J. Eggleton, J. Opt. Soc. Am. B 27, 2648 (2010).
    [CrossRef]
  18. J. H. Chow, B. S. Sheard, D. E. McClelland, and M. B. Gray, Opt. Lett. 30, 708 (2005).
    [CrossRef]

2012 (1)

H. Wen, M. Terrel, S. Fan, and M. Digonnet, IEEE Sens. J. 12, 156 (2012).
[CrossRef]

2011 (1)

2010 (2)

2009 (1)

2007 (1)

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. Krauss, Appl. Phys. Lett. 90, 261107 (2007).
[CrossRef]

2006 (1)

2005 (1)

2004 (1)

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, IEEE Photon. Technol. Lett. 16, 1864 (2004).
[CrossRef]

2000 (1)

J. Khurgin, Phys. Rev. A 62, 013821 (2000).
[CrossRef]

1997 (3)

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

C. R. Giles, J. Lightwave Technol. 15, 1391 (1997).
[CrossRef]

L. Poladian, Opt. Lett. 22, 1571 (1997).
[CrossRef]

1994 (2)

J. E. Sipe, L. Poladian, and C. M. de Sterke, J. Opt. Soc. Am. A 11, 1307 (1994).
[CrossRef]

G. P. Agrawal and S. Radic, IEEE Photon. Technol. Lett. 6, 995 (1994).
[CrossRef]

1993 (1)

V. Mizrahi and J. Sipe, J. Lightwave Technol. 11, 1513 (1993).
[CrossRef]

1979 (1)

H. G. Winful, J. H. Marburger, and E. Garmire, Appl. Phys. Lett. 35, 379 (1979).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and S. Radic, IEEE Photon. Technol. Lett. 6, 995 (1994).
[CrossRef]

Bolger, J. A.

Boyd, R. W.

Chow, J. H.

Corcoran, B.

de Sterke, C. M.

Digonnet, M.

H. Wen, M. Terrel, S. Fan, and M. Digonnet, IEEE Sens. J. 12, 156 (2012).
[CrossRef]

Eggleton, B. J.

Erdogan, T.

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

Fan, S.

H. Wen, M. Terrel, S. Fan, and M. Digonnet, IEEE Sens. J. 12, 156 (2012).
[CrossRef]

Garmire, E.

H. G. Winful, J. H. Marburger, and E. Garmire, Appl. Phys. Lett. 35, 379 (1979).
[CrossRef]

Gibbs, H. M.

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).

Giles, C. R.

C. R. Giles, J. Lightwave Technol. 15, 1391 (1997).
[CrossRef]

Gomez-Iglesias, A.

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. Krauss, Appl. Phys. Lett. 90, 261107 (2007).
[CrossRef]

Gray, M. B.

Grobnic, D.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, IEEE Photon. Technol. Lett. 16, 1864 (2004).
[CrossRef]

Grujic, T.

Kabakova, I. V.

Khurgin, J.

J. Khurgin, Phys. Rev. A 62, 013821 (2000).
[CrossRef]

Krauss, T.

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. Krauss, Appl. Phys. Lett. 90, 261107 (2007).
[CrossRef]

Littler, I. C. M.

Marburger, J. H.

H. G. Winful, J. H. Marburger, and E. Garmire, Appl. Phys. Lett. 35, 379 (1979).
[CrossRef]

McClelland, D. E.

Mihailov, S. J.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, IEEE Photon. Technol. Lett. 16, 1864 (2004).
[CrossRef]

Miller, A.

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. Krauss, Appl. Phys. Lett. 90, 261107 (2007).
[CrossRef]

Mizrahi, V.

V. Mizrahi and J. Sipe, J. Lightwave Technol. 11, 1513 (1993).
[CrossRef]

O’Brien, D.

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. Krauss, Appl. Phys. Lett. 90, 261107 (2007).
[CrossRef]

O’Faolain, L.

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. Krauss, Appl. Phys. Lett. 90, 261107 (2007).
[CrossRef]

Poladian, L.

Radic, S.

G. P. Agrawal and S. Radic, IEEE Photon. Technol. Lett. 6, 995 (1994).
[CrossRef]

Sheard, B. S.

Sipe, J.

V. Mizrahi and J. Sipe, J. Lightwave Technol. 11, 1513 (1993).
[CrossRef]

Sipe, J. E.

Smelser, C. W.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, IEEE Photon. Technol. Lett. 16, 1864 (2004).
[CrossRef]

Terrel, M.

H. Wen, M. Terrel, S. Fan, and M. Digonnet, IEEE Sens. J. 12, 156 (2012).
[CrossRef]

Walker, R. B.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, IEEE Photon. Technol. Lett. 16, 1864 (2004).
[CrossRef]

Walsh, T.

Wen, H.

H. Wen, M. Terrel, S. Fan, and M. Digonnet, IEEE Sens. J. 12, 156 (2012).
[CrossRef]

Winful, H. G.

H. G. Winful, J. H. Marburger, and E. Garmire, Appl. Phys. Lett. 35, 379 (1979).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. G. Winful, J. H. Marburger, and E. Garmire, Appl. Phys. Lett. 35, 379 (1979).
[CrossRef]

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. Krauss, Appl. Phys. Lett. 90, 261107 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

G. P. Agrawal and S. Radic, IEEE Photon. Technol. Lett. 6, 995 (1994).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, IEEE Photon. Technol. Lett. 16, 1864 (2004).
[CrossRef]

IEEE Sens. J. (1)

H. Wen, M. Terrel, S. Fan, and M. Digonnet, IEEE Sens. J. 12, 156 (2012).
[CrossRef]

J. Lightwave Technol. (3)

V. Mizrahi and J. Sipe, J. Lightwave Technol. 11, 1513 (1993).
[CrossRef]

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

C. R. Giles, J. Lightwave Technol. 15, 1391 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (1)

J. Khurgin, Phys. Rev. A 62, 013821 (2000).
[CrossRef]

Other (1)

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Gaussian profile FBG (Λ not to scale). The truncated, black region represents the 1.2 cm device under investigation (Λ=535nm, Δn103, standard deviation=0.42cm). (b) Analytic solution of the PBG along the optical axis overlaid with a transfer matrix simulation of the transmittance.

Fig. 2.
Fig. 2.

Experimental transmittance (black) and reflectance (red) data for the Gaussian-profile FBG showing the narrow-bandwidth peaks of the resonant modes. Inset shows that the spectral resolution is sufficient to resolve the narrowest resonant peak.

Fig. 3.
Fig. 3.

Measuring group delay in FBGs. (a) Schematic of interferometric measurement setup. (b) Transmittance of the resonance peaks. (c) Group delay measurement. (d) Peak group delays over multiple measurements.

Fig. 4.
Fig. 4.

Transfer matrix method simulations of FBG resonant modes with (black) and without (red) absorption. (a) The transmission spectrum. (b) FIE for each resonant mode. (c) Relationship between FIE and group delay showing enhancements of 800 seem achievable even with absorption.

Fig. 5.
Fig. 5.

Demonstration of optical bistability induced by the thermo-optic effect at small input powers. (a) For the sharpest observed resonant peak, low input power is 7 μW, while high is 340 μW. Plots vertically offset for clarity. (b) Measured wavelength shift response to input power for resonant modes of different group delay.

Metrics