Abstract

The direct pump method now used in excited state Faraday anomalous dispersion optical filters (ES-FADOFs) requires that the transition between the target and the ground state is an electric dipole allowed transition and that a laser that operates at the exact pump wavelength is available. This is not always satisfied in practice. An indirect laser pump method for ES-FADOF is proposed and experimentally realized. Compared with the commonly used direct pump method, this indirect pump method can reach the same performance using lasers at very different wavelengths. This method can greatly extend the wavelength range of FADOF and provide a novel scheme for ES-FADOF design.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, Appl. Opt. 21, 2069 (1982).
    [CrossRef]
  2. D. J. Dick and T. M. Shay, Opt. Lett. 16, 867 (1991).
    [CrossRef]
  3. J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, Opt. Lett. 16, 846 (1991).
    [CrossRef]
  4. J. Menders, P. Searcy, K. Roff, and E. Korevaar, Opt. Lett. 17, 1388 (1992).
    [CrossRef]
  5. H. Chen, C. Y. She, P. Searcy, and E. Korevaar, Opt. Lett. 18, 1019 (1993).
    [CrossRef]
  6. E. T. Dressler, A. E. Laux, and R. I. Billmers, J. Opt. Soc. Am. B 13, 1849 (1996).
    [CrossRef]
  7. Y. C. Chan and J. A. Gelbwachs, IEEE J. Quantum Electron. 29, 2379 (1993).
    [CrossRef]
  8. L. Chen, L. S. Alvarez, B. Yin, and T. M. Shay, Proc. SPIE 2123, 448 (1994).
  9. C. B. Svec and T. M. Shay, Proc. SPIE 2123, 470 (1994).
    [CrossRef]
  10. J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, Appl. Opt. 34, 2619 (1995).
    [CrossRef]
  11. H. Chen, M. A. White, D. A. Krueger, and C. Y. She, Opt. Lett. 21, 1093 (1996).
    [CrossRef]
  12. C. Fricke-Begemann, M. Alpers, and J. Höffner, Opt. Lett. 27, 1932 (2002).
    [CrossRef]
  13. A. Popescu and T. Walther, Appl. Phys. B 98, 667 (2010).
    [CrossRef]
  14. X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, Rev. Sci. Instrum. 82, 086106 (2011).
    [CrossRef]
  15. R. I. Billmers, S. K. Gayen, M. F. Squicciarini, V. M. Contarino, W. J. Scharpf, and D. M. Allocca, Opt. Lett. 20, 106 (1995).
    [CrossRef]
  16. A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, Opt. Commun. 264, 475 (2006).
    [CrossRef]
  17. T. Zhang, Y. Wang, X. Zang, W. Zhuang, and J. Chen, Chinese Sci. Bull. 58, 2033 (2013).
    [CrossRef]
  18. J. E. Sansonetti, J. Phys. Chem. Ref. Data 35, 301 (2006).
    [CrossRef]

2013 (1)

T. Zhang, Y. Wang, X. Zang, W. Zhuang, and J. Chen, Chinese Sci. Bull. 58, 2033 (2013).
[CrossRef]

2011 (1)

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef]

2010 (1)

A. Popescu and T. Walther, Appl. Phys. B 98, 667 (2010).
[CrossRef]

2006 (2)

J. E. Sansonetti, J. Phys. Chem. Ref. Data 35, 301 (2006).
[CrossRef]

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, Opt. Commun. 264, 475 (2006).
[CrossRef]

2002 (1)

1996 (2)

1995 (2)

1994 (2)

L. Chen, L. S. Alvarez, B. Yin, and T. M. Shay, Proc. SPIE 2123, 448 (1994).

C. B. Svec and T. M. Shay, Proc. SPIE 2123, 470 (1994).
[CrossRef]

1993 (2)

Y. C. Chan and J. A. Gelbwachs, IEEE J. Quantum Electron. 29, 2379 (1993).
[CrossRef]

H. Chen, C. Y. She, P. Searcy, and E. Korevaar, Opt. Lett. 18, 1019 (1993).
[CrossRef]

1992 (1)

1991 (2)

1982 (1)

Allocca, D. M.

Alpers, M.

Alvarez, L. S.

L. Chen, L. S. Alvarez, B. Yin, and T. M. Shay, Proc. SPIE 2123, 448 (1994).

Benson, K.

Billmers, R. I.

Bloom, S. H.

Chan, Y. C.

Y. C. Chan and J. A. Gelbwachs, IEEE J. Quantum Electron. 29, 2379 (1993).
[CrossRef]

Chen, H.

Chen, J.

T. Zhang, Y. Wang, X. Zang, W. Zhuang, and J. Chen, Chinese Sci. Bull. 58, 2033 (2013).
[CrossRef]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef]

Chen, L.

L. Chen, L. S. Alvarez, B. Yin, and T. M. Shay, Proc. SPIE 2123, 448 (1994).

Contarino, V. M.

Dang, A.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef]

Dick, D. J.

Dressler, E. T.

Duan, M.

Fricke-Begemann, C.

Gan, J.

Gayen, S. K.

Gelbwachs, J. A.

Y. C. Chan and J. A. Gelbwachs, IEEE J. Quantum Electron. 29, 2379 (1993).
[CrossRef]

Guo, H.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef]

Höffner, J.

Kong, J.

Korevaar, E.

Krueger, D. A.

Laux, A. E.

Li, Y.

Liu, C. S.

Luo, B.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef]

Menders, J.

Miao, X.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef]

Popescu, A.

A. Popescu and T. Walther, Appl. Phys. B 98, 667 (2010).
[CrossRef]

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, Opt. Commun. 264, 475 (2006).
[CrossRef]

Roff, K.

Sansonetti, J. E.

J. E. Sansonetti, J. Phys. Chem. Ref. Data 35, 301 (2006).
[CrossRef]

Scharpf, W. J.

Schorstein, K.

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, Opt. Commun. 264, 475 (2006).
[CrossRef]

Searcy, P.

Shay, T. M.

C. B. Svec and T. M. Shay, Proc. SPIE 2123, 470 (1994).
[CrossRef]

L. Chen, L. S. Alvarez, B. Yin, and T. M. Shay, Proc. SPIE 2123, 448 (1994).

D. J. Dick and T. M. Shay, Opt. Lett. 16, 867 (1991).
[CrossRef]

She, C. Y.

Squicciarini, M. F.

Svec, C. B.

C. B. Svec and T. M. Shay, Proc. SPIE 2123, 470 (1994).
[CrossRef]

Tang, J.

Walldorf, D.

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, Opt. Commun. 264, 475 (2006).
[CrossRef]

Walther, T.

A. Popescu and T. Walther, Appl. Phys. B 98, 667 (2010).
[CrossRef]

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, Opt. Commun. 264, 475 (2006).
[CrossRef]

Wang, Q.

Wang, Y.

T. Zhang, Y. Wang, X. Zang, W. Zhuang, and J. Chen, Chinese Sci. Bull. 58, 2033 (2013).
[CrossRef]

White, M. A.

Yeh, P.

Yin, B.

L. Chen, L. S. Alvarez, B. Yin, and T. M. Shay, Proc. SPIE 2123, 448 (1994).

Yin, L.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef]

Zang, X.

T. Zhang, Y. Wang, X. Zang, W. Zhuang, and J. Chen, Chinese Sci. Bull. 58, 2033 (2013).
[CrossRef]

Zhang, L.

Zhang, T.

T. Zhang, Y. Wang, X. Zang, W. Zhuang, and J. Chen, Chinese Sci. Bull. 58, 2033 (2013).
[CrossRef]

Zheng, L.

Zhuang, W.

T. Zhang, Y. Wang, X. Zang, W. Zhuang, and J. Chen, Chinese Sci. Bull. 58, 2033 (2013).
[CrossRef]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

A. Popescu and T. Walther, Appl. Phys. B 98, 667 (2010).
[CrossRef]

Chinese Sci. Bull. (1)

T. Zhang, Y. Wang, X. Zang, W. Zhuang, and J. Chen, Chinese Sci. Bull. 58, 2033 (2013).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. C. Chan and J. A. Gelbwachs, IEEE J. Quantum Electron. 29, 2379 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Ref. Data (1)

J. E. Sansonetti, J. Phys. Chem. Ref. Data 35, 301 (2006).
[CrossRef]

Opt. Commun. (1)

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, Opt. Commun. 264, 475 (2006).
[CrossRef]

Opt. Lett. (7)

Proc. SPIE (2)

L. Chen, L. S. Alvarez, B. Yin, and T. M. Shay, Proc. SPIE 2123, 448 (1994).

C. B. Svec and T. M. Shay, Proc. SPIE 2123, 470 (1994).
[CrossRef]

Rev. Sci. Instrum. (1)

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Energy levels of rubidium related to the experiment. The red parallel lines represent the working transition line of the filter. The blue bold lines are pump lasers of the direct (780 nm) and indirect (422 nm) pump methods. The green dashed lines are the possible spontaneous radiation.

Fig. 2.
Fig. 2.

Experimental setup. An external cavity diode provides a probe beam at 776 nm. Another two external cavity diodes are used, respectively, as an indirect pump laser at 422 nm and a direct pump laser at 780 nm. HWP1 and HWP2 are half-wave plates. P1 and P2 are two orthogonal polarizers. PBS1 and PBS2 are polarized beam splitters. D1 is a dichroic mirror. PD1 and PD2 are photodiodes. NDF is a continuously variable neutral density filter. The rubidium cell is made of quartz, with 50 mm length and 20 mm diameter.

Fig. 3.
Fig. 3.

(a) Peak transmittances at different pump powers. (b) Transmittance spectra of the two pump methods.

Fig. 4.
Fig. 4.

Relative fluorescence intensity of rubidium pumped by a 422 nm laser. Red triangles are the calculated intensities of transitions. The blue lines are experimental spectra measured by grating spectrographs.

Tables (2)

Tables Icon

Table 1. Wavelength (in Vaccum) and Transition Probability Aki for Each Line [17,18]

Tables Icon

Table 2. Population of Each State

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Iki=NρkkAkiωki4π,

Metrics