Abstract

We experimentally demonstrate the generation of a flat-top intensity distribution using a radially polarized vector beam. Our approach uses higher numerical aperture focusing than what has been previously reported for a single, fixed, vector beam. In addition, the flat-top focus generated in our scheme exhibits a polarization gradient along the radial coordinate in the focal volume, with an on-axis longitudinal field component that persists over 2λ, which is a stark difference from conventional flat-top fields, which exhibit intensity profiles that are uniformly polarized. Our experimental results are found to be in good agreement with the theoretical prediction.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Application of flat-top focus to 2D trapping of large particles

Hao Chen and K. C. Toussaint
Opt. Express 22(6) 6653-6660 (2014)

Poynting vector profile of a tightly focused radially polarized beam in the presence of primary aberrations

M. Gaffar and Bosanta R. Boruah
J. Opt. Soc. Am. A 32(4) 660-668 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription