Abstract

High-repetition-rate, burst-mode lasers can achieve higher energies per pulse compared with continuously pulsed systems, but the relatively few number of laser pulses in each burst has limited the temporal dynamic range of measurements in unsteady flames. A fivefold increase in the range of timescales that can be resolved by burst-mode laser-based imaging systems is reported in this work by extending a hybrid diode- and flashlamp-pumped Nd:YAG-based amplifier system to nearly 1000 pulses at 100 kHz during a 10 ms burst. This enables an unprecedented burst-mode temporal dynamic range to capture turbulent fluctuations from 0.1 to 50 kHz in flames of practical interest. High pulse intensity enables efficient conversion to the ultraviolet for planar laser-induced fluorescence imaging of nascent formaldehyde and other potential flame radicals.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Böhm, C. Heeger, R. L. Gordon, and A. Dreizler, Flow Turbul. Combust. 86, 313 (2010).
    [CrossRef]
  2. I. Boxx, C. D. Carter, M. Stöhr, and W. Meier, Exp. Fluids 54, 1532 (2013).
    [CrossRef]
  3. Edgewave GmbH, “HD Series Product Datasheet,” http://www.edge-wave.de/web/downloads/datenblatter/ (2013).
  4. M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Danczyk, and T. R. Meyer, Opt. Lett. 37, 1346 (2012).
    [CrossRef]
  5. N. Jiang, M. C. Webster, and W. R. Lempert, Appl. Opt. 48, B23 (2009).
    [CrossRef]
  6. F. Fuest, M. J. Papageorge, W. R. Lempert, and J. A. Sutton, Opt. Lett. 37, 3231 (2012).
    [CrossRef]
  7. J. D. Miller, M. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, Opt. Lett. 34, 1309 (2009).
    [CrossRef]
  8. K. Gabet, R. A. Patton, N. Jiang, W. R. Lempert, and J. A. Sutton, Appl. Phys. B 106, 569 (2012).
    [CrossRef]
  9. J. D. Miller, J. B. Michael, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. B 113, 93 (2013).
    [CrossRef]
  10. M. J. Papageorge, T. A. McManus, F. Fuest, and J. A. Sutton, “Recent advances in high-speed planar Rayleigh scattering in turbulent jets and flames: increased record lengths, acquisition rates, and image quality,” Appl. Phys. B (to be published).
    [CrossRef]
  11. N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, Appl. Opt. 50, A20 (2011).
    [CrossRef]
  12. M. Slipchenko, J. Miller, S. Roy, J. Gord, and T. Meyer, Opt. Express 21, 681 (2013).
    [CrossRef]
  13. J. M. Grace, P. E. Nebolsine, C. L. Goldley, G. Chahal, J. Norby, and J. M. Heritier, Opt. Eng. 37, 2205 (1998).
    [CrossRef]
  14. C. F. Kaminski, J. Hult, and M. Alden, Appl. Phys. B 68, 757 (1999).
    [CrossRef]
  15. P. P. Wu and R. B. Miles, Opt. Lett. 25, 1639 (2000).
    [CrossRef]
  16. B. Thurow, N. Jiang, M. Samimy, and W. Lempert, Appl. Opt. 43, 5064 (2004).
    [CrossRef]
  17. R. Schefer and P. Goix, Combust. Flame 112, 559 (1998).
    [CrossRef]
  18. L. Muñiz and M. Mungal, Combust. Flame 126, 1402 (2001).
    [CrossRef]
  19. C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, Spectrochim. Acta A 59, 3347 (2003).
    [CrossRef]
  20. N. R. Panchapakesan and J. L. Lumley, J. Fluid Mech. 246, 225 (1993).
    [CrossRef]
  21. T. C. Lieuwen and V. Yang, eds., Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling (American Institute of Aeronautics and Astronautics, 2005).

2013 (3)

I. Boxx, C. D. Carter, M. Stöhr, and W. Meier, Exp. Fluids 54, 1532 (2013).
[CrossRef]

J. D. Miller, J. B. Michael, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. B 113, 93 (2013).
[CrossRef]

M. Slipchenko, J. Miller, S. Roy, J. Gord, and T. Meyer, Opt. Express 21, 681 (2013).
[CrossRef]

2012 (3)

2011 (1)

2010 (1)

B. Böhm, C. Heeger, R. L. Gordon, and A. Dreizler, Flow Turbul. Combust. 86, 313 (2010).
[CrossRef]

2009 (2)

2004 (1)

2003 (1)

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, Spectrochim. Acta A 59, 3347 (2003).
[CrossRef]

2001 (1)

L. Muñiz and M. Mungal, Combust. Flame 126, 1402 (2001).
[CrossRef]

2000 (1)

1999 (1)

C. F. Kaminski, J. Hult, and M. Alden, Appl. Phys. B 68, 757 (1999).
[CrossRef]

1998 (2)

R. Schefer and P. Goix, Combust. Flame 112, 559 (1998).
[CrossRef]

J. M. Grace, P. E. Nebolsine, C. L. Goldley, G. Chahal, J. Norby, and J. M. Heritier, Opt. Eng. 37, 2205 (1998).
[CrossRef]

1993 (1)

N. R. Panchapakesan and J. L. Lumley, J. Fluid Mech. 246, 225 (1993).
[CrossRef]

Alden, M.

C. F. Kaminski, J. Hult, and M. Alden, Appl. Phys. B 68, 757 (1999).
[CrossRef]

Aldén, M.

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, Spectrochim. Acta A 59, 3347 (2003).
[CrossRef]

Axelsson, B.

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, Spectrochim. Acta A 59, 3347 (2003).
[CrossRef]

Bai, X.

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, Spectrochim. Acta A 59, 3347 (2003).
[CrossRef]

Bengtsson, P.-E.

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, Spectrochim. Acta A 59, 3347 (2003).
[CrossRef]

Bladh, H.

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, Spectrochim. Acta A 59, 3347 (2003).
[CrossRef]

Böhm, B.

B. Böhm, C. Heeger, R. L. Gordon, and A. Dreizler, Flow Turbul. Combust. 86, 313 (2010).
[CrossRef]

Boxx, I.

I. Boxx, C. D. Carter, M. Stöhr, and W. Meier, Exp. Fluids 54, 1532 (2013).
[CrossRef]

Brackmann, C.

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, Spectrochim. Acta A 59, 3347 (2003).
[CrossRef]

Carter, C. D.

I. Boxx, C. D. Carter, M. Stöhr, and W. Meier, Exp. Fluids 54, 1532 (2013).
[CrossRef]

Chahal, G.

J. M. Grace, P. E. Nebolsine, C. L. Goldley, G. Chahal, J. Norby, and J. M. Heritier, Opt. Eng. 37, 2205 (1998).
[CrossRef]

Danczyk, S. A.

Danehy, P. M.

Denbratt, I.

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, Spectrochim. Acta A 59, 3347 (2003).
[CrossRef]

Dreizler, A.

B. Böhm, C. Heeger, R. L. Gordon, and A. Dreizler, Flow Turbul. Combust. 86, 313 (2010).
[CrossRef]

Fuest, F.

F. Fuest, M. J. Papageorge, W. R. Lempert, and J. A. Sutton, Opt. Lett. 37, 3231 (2012).
[CrossRef]

M. J. Papageorge, T. A. McManus, F. Fuest, and J. A. Sutton, “Recent advances in high-speed planar Rayleigh scattering in turbulent jets and flames: increased record lengths, acquisition rates, and image quality,” Appl. Phys. B (to be published).
[CrossRef]

Gabet, K.

K. Gabet, R. A. Patton, N. Jiang, W. R. Lempert, and J. A. Sutton, Appl. Phys. B 106, 569 (2012).
[CrossRef]

Goix, P.

R. Schefer and P. Goix, Combust. Flame 112, 559 (1998).
[CrossRef]

Goldley, C. L.

J. M. Grace, P. E. Nebolsine, C. L. Goldley, G. Chahal, J. Norby, and J. M. Heritier, Opt. Eng. 37, 2205 (1998).
[CrossRef]

Gord, J.

Gord, J. R.

Gordon, R. L.

B. Böhm, C. Heeger, R. L. Gordon, and A. Dreizler, Flow Turbul. Combust. 86, 313 (2010).
[CrossRef]

Grace, J. M.

J. M. Grace, P. E. Nebolsine, C. L. Goldley, G. Chahal, J. Norby, and J. M. Heritier, Opt. Eng. 37, 2205 (1998).
[CrossRef]

Heeger, C.

B. Böhm, C. Heeger, R. L. Gordon, and A. Dreizler, Flow Turbul. Combust. 86, 313 (2010).
[CrossRef]

Heritier, J. M.

J. M. Grace, P. E. Nebolsine, C. L. Goldley, G. Chahal, J. Norby, and J. M. Heritier, Opt. Eng. 37, 2205 (1998).
[CrossRef]

Hult, J.

C. F. Kaminski, J. Hult, and M. Alden, Appl. Phys. B 68, 757 (1999).
[CrossRef]

Ivey, C. B.

Jiang, N.

Kaminski, C. F.

C. F. Kaminski, J. Hult, and M. Alden, Appl. Phys. B 68, 757 (1999).
[CrossRef]

Koopmans, L.

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, Spectrochim. Acta A 59, 3347 (2003).
[CrossRef]

Lempert, W.

Lempert, W. R.

Li, Z.

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, Spectrochim. Acta A 59, 3347 (2003).
[CrossRef]

Lumley, J. L.

N. R. Panchapakesan and J. L. Lumley, J. Fluid Mech. 246, 225 (1993).
[CrossRef]

McManus, T. A.

M. J. Papageorge, T. A. McManus, F. Fuest, and J. A. Sutton, “Recent advances in high-speed planar Rayleigh scattering in turbulent jets and flames: increased record lengths, acquisition rates, and image quality,” Appl. Phys. B (to be published).
[CrossRef]

Meier, W.

I. Boxx, C. D. Carter, M. Stöhr, and W. Meier, Exp. Fluids 54, 1532 (2013).
[CrossRef]

Meyer, T.

Meyer, T. R.

Michael, J. B.

J. D. Miller, J. B. Michael, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. B 113, 93 (2013).
[CrossRef]

Miles, R. B.

Miller, J.

Miller, J. D.

Mungal, M.

L. Muñiz and M. Mungal, Combust. Flame 126, 1402 (2001).
[CrossRef]

Muñiz, L.

L. Muñiz and M. Mungal, Combust. Flame 126, 1402 (2001).
[CrossRef]

Nebolsine, P. E.

J. M. Grace, P. E. Nebolsine, C. L. Goldley, G. Chahal, J. Norby, and J. M. Heritier, Opt. Eng. 37, 2205 (1998).
[CrossRef]

Norby, J.

J. M. Grace, P. E. Nebolsine, C. L. Goldley, G. Chahal, J. Norby, and J. M. Heritier, Opt. Eng. 37, 2205 (1998).
[CrossRef]

Nygren, J.

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, Spectrochim. Acta A 59, 3347 (2003).
[CrossRef]

Panchapakesan, N. R.

N. R. Panchapakesan and J. L. Lumley, J. Fluid Mech. 246, 225 (1993).
[CrossRef]

Papageorge, M. J.

F. Fuest, M. J. Papageorge, W. R. Lempert, and J. A. Sutton, Opt. Lett. 37, 3231 (2012).
[CrossRef]

M. J. Papageorge, T. A. McManus, F. Fuest, and J. A. Sutton, “Recent advances in high-speed planar Rayleigh scattering in turbulent jets and flames: increased record lengths, acquisition rates, and image quality,” Appl. Phys. B (to be published).
[CrossRef]

Patton, R. A.

K. Gabet, R. A. Patton, N. Jiang, W. R. Lempert, and J. A. Sutton, Appl. Phys. B 106, 569 (2012).
[CrossRef]

Roy, S.

Samimy, M.

Schefer, R.

R. Schefer and P. Goix, Combust. Flame 112, 559 (1998).
[CrossRef]

Slipchenko, M.

Slipchenko, M. N.

J. D. Miller, J. B. Michael, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. B 113, 93 (2013).
[CrossRef]

M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Danczyk, and T. R. Meyer, Opt. Lett. 37, 1346 (2012).
[CrossRef]

Stöhr, M.

I. Boxx, C. D. Carter, M. Stöhr, and W. Meier, Exp. Fluids 54, 1532 (2013).
[CrossRef]

Sutton, J. A.

K. Gabet, R. A. Patton, N. Jiang, W. R. Lempert, and J. A. Sutton, Appl. Phys. B 106, 569 (2012).
[CrossRef]

F. Fuest, M. J. Papageorge, W. R. Lempert, and J. A. Sutton, Opt. Lett. 37, 3231 (2012).
[CrossRef]

M. J. Papageorge, T. A. McManus, F. Fuest, and J. A. Sutton, “Recent advances in high-speed planar Rayleigh scattering in turbulent jets and flames: increased record lengths, acquisition rates, and image quality,” Appl. Phys. B (to be published).
[CrossRef]

Thurow, B.

Webster, M.

Webster, M. C.

Wu, P. P.

Appl. Opt. (3)

Appl. Phys. B (3)

K. Gabet, R. A. Patton, N. Jiang, W. R. Lempert, and J. A. Sutton, Appl. Phys. B 106, 569 (2012).
[CrossRef]

J. D. Miller, J. B. Michael, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. B 113, 93 (2013).
[CrossRef]

C. F. Kaminski, J. Hult, and M. Alden, Appl. Phys. B 68, 757 (1999).
[CrossRef]

Combust. Flame (2)

R. Schefer and P. Goix, Combust. Flame 112, 559 (1998).
[CrossRef]

L. Muñiz and M. Mungal, Combust. Flame 126, 1402 (2001).
[CrossRef]

Exp. Fluids (1)

I. Boxx, C. D. Carter, M. Stöhr, and W. Meier, Exp. Fluids 54, 1532 (2013).
[CrossRef]

Flow Turbul. Combust. (1)

B. Böhm, C. Heeger, R. L. Gordon, and A. Dreizler, Flow Turbul. Combust. 86, 313 (2010).
[CrossRef]

J. Fluid Mech. (1)

N. R. Panchapakesan and J. L. Lumley, J. Fluid Mech. 246, 225 (1993).
[CrossRef]

Opt. Eng. (1)

J. M. Grace, P. E. Nebolsine, C. L. Goldley, G. Chahal, J. Norby, and J. M. Heritier, Opt. Eng. 37, 2205 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Spectrochim. Acta A (1)

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, Spectrochim. Acta A 59, 3347 (2003).
[CrossRef]

Other (3)

Edgewave GmbH, “HD Series Product Datasheet,” http://www.edge-wave.de/web/downloads/datenblatter/ (2013).

M. J. Papageorge, T. A. McManus, F. Fuest, and J. A. Sutton, “Recent advances in high-speed planar Rayleigh scattering in turbulent jets and flames: increased record lengths, acquisition rates, and image quality,” Appl. Phys. B (to be published).
[CrossRef]

T. C. Lieuwen and V. Yang, eds., Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling (American Institute of Aeronautics and Astronautics, 2005).

Supplementary Material (1)

» Media 1: AVI (6065 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Burst-mode laser layout. HWP, half-wave plate; EOM, electro-optic modulator; PH, pinhole; Amp, amplifier; TFP, thin-film polarizer; OI, optical isolator.

Fig. 2.
Fig. 2.

(a) Fundamental output showing a 980 pulse sequence with ± 9 % shot-to-shot fluctuations. (b) Histogram of normalized pulse intensities.

Fig. 3.
Fig. 3.

Experimental setup showing lifted diffusion flame and field of view imaged by HS-IRO and high-speed CMOS imaging system.

Fig. 4.
Fig. 4.

Sample sequence of CH 2 O PLIF at 100 kHz showing every 20th image in record length of 980 images (video of complete sequence shown in Media 1). Typical signal levels indicated in line plots of Fig. 5 below.

Fig. 5.
Fig. 5.

(a) Sample formaldehyde PLIF images every 20 μs and (b) line plots across three images of interest.

Tables (1)

Tables Icon

Table 1. Operating Parameters and Temporal Dynamic Range of Burst-Mode Laser Systems for High-Speed Imaging

Metrics