Abstract

An effective long-haul self-mixing interference effect has been observed in a thin-slice LiNdP4O12 (LNP) laser due to Doppler-shifted optical feedback from a distant target. The narrow spectral linewidth of the LNP laser, which was evaluated to be 16 kHz by heterodyne measurements, led to successful self-mixing laser Doppler velocimetry and vibrometry of targets placed 2.5 km away from the laser through single-mode optical fiber access.

© 2014 Optical Society of America

Full Article  |  PDF Article

Errata

Kenju Otsuka, "Long-haul self-mixing interference and remote sensing of a distant moving target with a thin-slice solid-state laser: erratum," Opt. Lett. 39, 3046-3046 (2014)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-39-10-3046

References

  • View by:
  • |
  • |
  • |

  1. K. Otsuka, IEEE J. Quantum Electron. 15, 655 (1979).
    [CrossRef]
  2. K. Otsuka, Sensors 11, 2195 (2011), and references therein.
    [CrossRef]
  3. S. Sudo, T. Ohtomo, M. Iwamatsu, T. Osada, and K. Otsuka, Appl. Opt. 51, 370 (2011).
    [CrossRef]
  4. S. Sudo, T. Ohtomo, and K. Otsuka, J. Appl. Phys. 114, 063106 (2013).
    [CrossRef]
  5. Y. Tan, W. Wang, C. Xu, and S. Zhang, Sci. Rep. 3, 2971 (2013).
    [CrossRef]
  6. J. J. Zayhowski and A. Mooradian, Opt. Lett. 14, 24 (1989).
    [CrossRef]
  7. J. J. Zayhowski, Lincoln Lab. J. 3, 427 (1990).
  8. C. H. Henry, IEEE J. Quantum Electron. 18, 259 (1982).
    [CrossRef]
  9. T. L. Koch and J. E. Bowers, Electron. Lett. 20, 1038 (1984).
    [CrossRef]
  10. C. Harder, K. Vahala, and A. Yariv, Appl. Phys. Lett. 42, 328 (1983).
    [CrossRef]
  11. C. Swaj, E. Lacot, and O. Hugon, Phys. Rev. A 70, 033809 (2004).
    [CrossRef]
  12. K. Otsuka, K. Abe, J.-Y. Ko, and T.-S. Lim, Opt. Lett. 27, 1339 (2002).
    [CrossRef]
  13. T. Ohtomo, S. Sudo, and K. Otsuka, Appl. Opt. 48, 609 (2009).
    [CrossRef]

2013

S. Sudo, T. Ohtomo, and K. Otsuka, J. Appl. Phys. 114, 063106 (2013).
[CrossRef]

Y. Tan, W. Wang, C. Xu, and S. Zhang, Sci. Rep. 3, 2971 (2013).
[CrossRef]

2011

2009

2004

C. Swaj, E. Lacot, and O. Hugon, Phys. Rev. A 70, 033809 (2004).
[CrossRef]

2002

1990

J. J. Zayhowski, Lincoln Lab. J. 3, 427 (1990).

1989

1984

T. L. Koch and J. E. Bowers, Electron. Lett. 20, 1038 (1984).
[CrossRef]

1983

C. Harder, K. Vahala, and A. Yariv, Appl. Phys. Lett. 42, 328 (1983).
[CrossRef]

1982

C. H. Henry, IEEE J. Quantum Electron. 18, 259 (1982).
[CrossRef]

1979

K. Otsuka, IEEE J. Quantum Electron. 15, 655 (1979).
[CrossRef]

Abe, K.

Bowers, J. E.

T. L. Koch and J. E. Bowers, Electron. Lett. 20, 1038 (1984).
[CrossRef]

Harder, C.

C. Harder, K. Vahala, and A. Yariv, Appl. Phys. Lett. 42, 328 (1983).
[CrossRef]

Henry, C. H.

C. H. Henry, IEEE J. Quantum Electron. 18, 259 (1982).
[CrossRef]

Hugon, O.

C. Swaj, E. Lacot, and O. Hugon, Phys. Rev. A 70, 033809 (2004).
[CrossRef]

Iwamatsu, M.

Ko, J.-Y.

Koch, T. L.

T. L. Koch and J. E. Bowers, Electron. Lett. 20, 1038 (1984).
[CrossRef]

Lacot, E.

C. Swaj, E. Lacot, and O. Hugon, Phys. Rev. A 70, 033809 (2004).
[CrossRef]

Lim, T.-S.

Mooradian, A.

Ohtomo, T.

Osada, T.

Otsuka, K.

Sudo, S.

Swaj, C.

C. Swaj, E. Lacot, and O. Hugon, Phys. Rev. A 70, 033809 (2004).
[CrossRef]

Tan, Y.

Y. Tan, W. Wang, C. Xu, and S. Zhang, Sci. Rep. 3, 2971 (2013).
[CrossRef]

Vahala, K.

C. Harder, K. Vahala, and A. Yariv, Appl. Phys. Lett. 42, 328 (1983).
[CrossRef]

Wang, W.

Y. Tan, W. Wang, C. Xu, and S. Zhang, Sci. Rep. 3, 2971 (2013).
[CrossRef]

Xu, C.

Y. Tan, W. Wang, C. Xu, and S. Zhang, Sci. Rep. 3, 2971 (2013).
[CrossRef]

Yariv, A.

C. Harder, K. Vahala, and A. Yariv, Appl. Phys. Lett. 42, 328 (1983).
[CrossRef]

Zayhowski, J. J.

J. J. Zayhowski, Lincoln Lab. J. 3, 427 (1990).

J. J. Zayhowski and A. Mooradian, Opt. Lett. 14, 24 (1989).
[CrossRef]

Zhang, S.

Y. Tan, W. Wang, C. Xu, and S. Zhang, Sci. Rep. 3, 2971 (2013).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

C. Harder, K. Vahala, and A. Yariv, Appl. Phys. Lett. 42, 328 (1983).
[CrossRef]

Electron. Lett.

T. L. Koch and J. E. Bowers, Electron. Lett. 20, 1038 (1984).
[CrossRef]

IEEE J. Quantum Electron.

C. H. Henry, IEEE J. Quantum Electron. 18, 259 (1982).
[CrossRef]

K. Otsuka, IEEE J. Quantum Electron. 15, 655 (1979).
[CrossRef]

J. Appl. Phys.

S. Sudo, T. Ohtomo, and K. Otsuka, J. Appl. Phys. 114, 063106 (2013).
[CrossRef]

Lincoln Lab. J.

J. J. Zayhowski, Lincoln Lab. J. 3, 427 (1990).

Opt. Lett.

Phys. Rev. A

C. Swaj, E. Lacot, and O. Hugon, Phys. Rev. A 70, 033809 (2004).
[CrossRef]

Sci. Rep.

Y. Tan, W. Wang, C. Xu, and S. Zhang, Sci. Rep. 3, 2971 (2013).
[CrossRef]

Sensors

K. Otsuka, Sensors 11, 2195 (2011), and references therein.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup of the self-mixing LDV. OL, objective lens; BS, beam splitter; M1 and M2, coated mirrors.

Fig. 2.
Fig. 2.

Oscillation property of the free-running LNP laser. Pump power P=88mW (w=P/Pth=1.7). (a) Far-field pattern and optical spectrum, (b) long-term intensity waveform, (c) power spectrum of (b), and (d) intensity probability distribution.

Fig. 3.
Fig. 3.

Modulated output intensities (upper curves) and measured power spectra (lower curves) indicating LDV signals, with w=1.7. (a) v=0.96m/s, (b) v=2.19m/s. SNR is defined as the LDV signal intensity above the noise level of the free-running laser without feedback. The detection system noise level is indicated by arrows.

Fig. 4.
Fig. 4.

LDV SNR as a function of the moving velocity, with w=1.7. Solid circles indicate 2.5 km long single-mode fiber access. Triangles indicate 1-m-long single-mode fiber access.

Fig. 5.
Fig. 5.

(a) Beat-note spectrum featuring relaxation oscillation sidebands indicated by the arrows. w=1.7. (b) Magnified view of the main peak in the linear scale (frequency resolution: 6.25 kHz). The Gaussian fitting function is indicated by the red dashed curve.

Fig. 6.
Fig. 6.

Frequency excursions associated with the driven relaxation oscillations (RO) at different frequencies.

Fig. 7.
Fig. 7.

Self-mixing laser vibrometry scheme. OL, objective lens.

Fig. 8.
Fig. 8.

Upper curves: power spectra of the modulated LNP laser. Lower curves: vibration waveforms. w=1.7. Applied voltage: (a) 0.36 V and (b) 1.39 V.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δν=(1/2πτp)hν/Po[Hz/Hz].
Δνc=π(δν)2[Hz].
α=2κΔn/Δg.
Δνs=(α/2)(ΔI/I0)fRO,

Metrics