Abstract

We present measurements on resonant photodetectors utilizing sub-bandgap absorption in polycrystalline silicon ring resonators, in which light is localized in the intrinsic region of a p+/p/i/n/n+ diode. The devices, operating both at λ=1280 and λ=1550nm and fabricated in a complementary metal-oxide-semiconductor (CMOS) dynamic random-access memory emulation process, exhibit detection quantum efficiencies around 20% and few-gigahertz response bandwidths. We observe this performance at low reverse biases in the range of a few volts and in devices with dark currents below 50 pA at 10 V. These results demonstrate that such photodetector behavior, previously reported by Preston et al. [Opt. Lett. 36, 52 (2011)], is achievable in bulk CMOS processes, with significant improvements with respect to the previous work in quantum efficiency, dark current, linearity, bandwidth, and operating bias due to additional midlevel doping implants and different material deposition. The present work thus offers a robust realization of a fully CMOS-fabricated all-silicon photodetector functional across a wide wavelength range.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kärtner, R. J. Ram, V. Stojanović, and K. Asanović, IEEE Micro 29, 8 (2009).
    [CrossRef]
  2. J. M. Shainline, J. S. Orcutt, M. T. Wade, K. Nammari, B. Moss, M. Georgas, C. Sun, R. J. Ram, V. Stojanović, and M. A. Popović, Opt. Lett. 38, 2657 (2013).
    [CrossRef]
  3. E. Timurdogan, C. M. Sorace-Agaskar, E. S. Hosseini, and M. R. Watts, J. Lightwave Technol. 31, 3907 (2013).
    [CrossRef]
  4. S. Assefa, F. Xia, and Y. A. Vlasov, Nature 464, 80 (2010).
    [CrossRef]
  5. L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fédéli, Opt. Express 20, 1096 (2012).
    [CrossRef]
  6. M. Georgas, J. Orcutt, R. J. Ram, and V. Stojanovic, IEEE J. Solid-State Circuits 47, 1693 (2012).
    [CrossRef]
  7. J. S. Orcutt, S. D. Tang, S. Kramer, K. Mehta, H. Li, V. Stojanović, and R. J. Ram, Opt. Express 20, 7243 (2012).
    [CrossRef]
  8. K. Preston, Y. H. D. Lee, M. Zhang, and M. Lipson, Opt. Lett. 36, 52 (2011).
    [CrossRef]
  9. M. Geis, S. Spector, M. Grein, J. Yoon, D. Lennon, and T. Lyszczarz, Opt. Express 17, 5193 (2009).
    [CrossRef]
  10. J. Doylend, P. Jessop, and A. Knights, Opt. Express 18, 14671 (2010).
    [CrossRef]
  11. An approximately −30  pA offset was present in the current source-measure unit used in these I–V measurements; at −10  V, for example, currents of −40  pA were observed in the data in Fig. 3(a) while later measurements with a more sensitive semiconductor parameter analyzer on devices of the same design on a different die yielded currents around −10  pA at the same voltage.
  12. B. E. Little, J.-P. Laine, and S. T. Chu, Opt. Lett. 22, 4 (1997).
    [CrossRef]
  13. M. Popović, “Theory and design of high-index-contrast microphotonic circuits,” Ph.D. thesis, Massachusetts Institute of Technology, 2008.
  14. K. K. Mehta, J. S. Orcutt, O. Tehar-Zahav, Z. Sternberg, R. Bafrali, R. Meade, and R. J. Ram, Sci. Rep. 4, 4077 (2014).
  15. J. M. Shainline, J. S. Orcutt, M. T. Wade, K. Nammari, O. Tehar-Zahav, Z. Sternberg, R. Meade, R. J. Ram, V. Stojanović, and M. A. Popović, Opt. Lett. 38, 2729 (2013).
    [CrossRef]

2014 (1)

K. K. Mehta, J. S. Orcutt, O. Tehar-Zahav, Z. Sternberg, R. Bafrali, R. Meade, and R. J. Ram, Sci. Rep. 4, 4077 (2014).

2013 (3)

2012 (3)

2011 (1)

2010 (2)

S. Assefa, F. Xia, and Y. A. Vlasov, Nature 464, 80 (2010).
[CrossRef]

J. Doylend, P. Jessop, and A. Knights, Opt. Express 18, 14671 (2010).
[CrossRef]

2009 (2)

M. Geis, S. Spector, M. Grein, J. Yoon, D. Lennon, and T. Lyszczarz, Opt. Express 17, 5193 (2009).
[CrossRef]

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kärtner, R. J. Ram, V. Stojanović, and K. Asanović, IEEE Micro 29, 8 (2009).
[CrossRef]

1997 (1)

Asanovic, K.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kärtner, R. J. Ram, V. Stojanović, and K. Asanović, IEEE Micro 29, 8 (2009).
[CrossRef]

Assefa, S.

S. Assefa, F. Xia, and Y. A. Vlasov, Nature 464, 80 (2010).
[CrossRef]

Bafrali, R.

K. K. Mehta, J. S. Orcutt, O. Tehar-Zahav, Z. Sternberg, R. Bafrali, R. Meade, and R. J. Ram, Sci. Rep. 4, 4077 (2014).

Batten, C.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kärtner, R. J. Ram, V. Stojanović, and K. Asanović, IEEE Micro 29, 8 (2009).
[CrossRef]

Cassan, E.

Chu, S. T.

Crozat, P.

Doylend, J.

Fédéli, J. M.

Geis, M.

Georgas, M.

Grein, M.

Hartmann, J. M.

Holzwarth, C. W.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kärtner, R. J. Ram, V. Stojanović, and K. Asanović, IEEE Micro 29, 8 (2009).
[CrossRef]

Hosseini, E. S.

Hoyt, J. L.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kärtner, R. J. Ram, V. Stojanović, and K. Asanović, IEEE Micro 29, 8 (2009).
[CrossRef]

Jessop, P.

Joshi, A.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kärtner, R. J. Ram, V. Stojanović, and K. Asanović, IEEE Micro 29, 8 (2009).
[CrossRef]

Kärtner, F. X.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kärtner, R. J. Ram, V. Stojanović, and K. Asanović, IEEE Micro 29, 8 (2009).
[CrossRef]

Khilo, A.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kärtner, R. J. Ram, V. Stojanović, and K. Asanović, IEEE Micro 29, 8 (2009).
[CrossRef]

Knights, A.

Kopp, C.

Kramer, S.

Laine, J.-P.

Lee, Y. H. D.

Lennon, D.

Li, H.

J. S. Orcutt, S. D. Tang, S. Kramer, K. Mehta, H. Li, V. Stojanović, and R. J. Ram, Opt. Express 20, 7243 (2012).
[CrossRef]

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kärtner, R. J. Ram, V. Stojanović, and K. Asanović, IEEE Micro 29, 8 (2009).
[CrossRef]

Lipson, M.

Little, B. E.

Lyszczarz, T.

Marris-Morini, D.

Meade, R.

K. K. Mehta, J. S. Orcutt, O. Tehar-Zahav, Z. Sternberg, R. Bafrali, R. Meade, and R. J. Ram, Sci. Rep. 4, 4077 (2014).

J. M. Shainline, J. S. Orcutt, M. T. Wade, K. Nammari, O. Tehar-Zahav, Z. Sternberg, R. Meade, R. J. Ram, V. Stojanović, and M. A. Popović, Opt. Lett. 38, 2729 (2013).
[CrossRef]

Mehta, K.

Mehta, K. K.

K. K. Mehta, J. S. Orcutt, O. Tehar-Zahav, Z. Sternberg, R. Bafrali, R. Meade, and R. J. Ram, Sci. Rep. 4, 4077 (2014).

Moss, B.

J. M. Shainline, J. S. Orcutt, M. T. Wade, K. Nammari, B. Moss, M. Georgas, C. Sun, R. J. Ram, V. Stojanović, and M. A. Popović, Opt. Lett. 38, 2657 (2013).
[CrossRef]

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kärtner, R. J. Ram, V. Stojanović, and K. Asanović, IEEE Micro 29, 8 (2009).
[CrossRef]

Nammari, K.

Orcutt, J.

M. Georgas, J. Orcutt, R. J. Ram, and V. Stojanovic, IEEE J. Solid-State Circuits 47, 1693 (2012).
[CrossRef]

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kärtner, R. J. Ram, V. Stojanović, and K. Asanović, IEEE Micro 29, 8 (2009).
[CrossRef]

Orcutt, J. S.

Osmond, J.

Polzer, A.

Popovic, M.

M. Popović, “Theory and design of high-index-contrast microphotonic circuits,” Ph.D. thesis, Massachusetts Institute of Technology, 2008.

Popovic, M. A.

Preston, K.

Ram, R. J.

K. K. Mehta, J. S. Orcutt, O. Tehar-Zahav, Z. Sternberg, R. Bafrali, R. Meade, and R. J. Ram, Sci. Rep. 4, 4077 (2014).

J. M. Shainline, J. S. Orcutt, M. T. Wade, K. Nammari, O. Tehar-Zahav, Z. Sternberg, R. Meade, R. J. Ram, V. Stojanović, and M. A. Popović, Opt. Lett. 38, 2729 (2013).
[CrossRef]

J. M. Shainline, J. S. Orcutt, M. T. Wade, K. Nammari, B. Moss, M. Georgas, C. Sun, R. J. Ram, V. Stojanović, and M. A. Popović, Opt. Lett. 38, 2657 (2013).
[CrossRef]

M. Georgas, J. Orcutt, R. J. Ram, and V. Stojanovic, IEEE J. Solid-State Circuits 47, 1693 (2012).
[CrossRef]

J. S. Orcutt, S. D. Tang, S. Kramer, K. Mehta, H. Li, V. Stojanović, and R. J. Ram, Opt. Express 20, 7243 (2012).
[CrossRef]

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kärtner, R. J. Ram, V. Stojanović, and K. Asanović, IEEE Micro 29, 8 (2009).
[CrossRef]

Shainline, J. M.

Smith, H. I.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kärtner, R. J. Ram, V. Stojanović, and K. Asanović, IEEE Micro 29, 8 (2009).
[CrossRef]

Sorace-Agaskar, C. M.

Spector, S.

Sternberg, Z.

K. K. Mehta, J. S. Orcutt, O. Tehar-Zahav, Z. Sternberg, R. Bafrali, R. Meade, and R. J. Ram, Sci. Rep. 4, 4077 (2014).

J. M. Shainline, J. S. Orcutt, M. T. Wade, K. Nammari, O. Tehar-Zahav, Z. Sternberg, R. Meade, R. J. Ram, V. Stojanović, and M. A. Popović, Opt. Lett. 38, 2729 (2013).
[CrossRef]

Stojanovic, V.

Sun, C.

Tang, S. D.

Tehar-Zahav, O.

K. K. Mehta, J. S. Orcutt, O. Tehar-Zahav, Z. Sternberg, R. Bafrali, R. Meade, and R. J. Ram, Sci. Rep. 4, 4077 (2014).

J. M. Shainline, J. S. Orcutt, M. T. Wade, K. Nammari, O. Tehar-Zahav, Z. Sternberg, R. Meade, R. J. Ram, V. Stojanović, and M. A. Popović, Opt. Lett. 38, 2729 (2013).
[CrossRef]

Timurdogan, E.

Vivien, L.

Vlasov, Y. A.

S. Assefa, F. Xia, and Y. A. Vlasov, Nature 464, 80 (2010).
[CrossRef]

Wade, M. T.

Watts, M. R.

Xia, F.

S. Assefa, F. Xia, and Y. A. Vlasov, Nature 464, 80 (2010).
[CrossRef]

Yoon, J.

Zhang, M.

Zimmermann, H.

IEEE J. Solid-State Circuits (1)

M. Georgas, J. Orcutt, R. J. Ram, and V. Stojanovic, IEEE J. Solid-State Circuits 47, 1693 (2012).
[CrossRef]

IEEE Micro (1)

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kärtner, R. J. Ram, V. Stojanović, and K. Asanović, IEEE Micro 29, 8 (2009).
[CrossRef]

J. Lightwave Technol. (1)

Nature (1)

S. Assefa, F. Xia, and Y. A. Vlasov, Nature 464, 80 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Sci. Rep. (1)

K. K. Mehta, J. S. Orcutt, O. Tehar-Zahav, Z. Sternberg, R. Bafrali, R. Meade, and R. J. Ram, Sci. Rep. 4, 4077 (2014).

Other (2)

An approximately −30  pA offset was present in the current source-measure unit used in these I–V measurements; at −10  V, for example, currents of −40  pA were observed in the data in Fig. 3(a) while later measurements with a more sensitive semiconductor parameter analyzer on devices of the same design on a different die yielded currents around −10  pA at the same voltage.

M. Popović, “Theory and design of high-index-contrast microphotonic circuits,” Ph.D. thesis, Massachusetts Institute of Technology, 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Optical micrograph of detector device, (b) TEM image of a waveguide cross section, (c) top-down schematic of device showing waveguide and implant geometry, and (d) schematic cross section of waveguide core in ring photodetectors showing intrinsic, mid (p, n), and high-level (p+, n+) doped regions.

Fig. 2.
Fig. 2.

Fiber–fiber transmission and photocurrent spectra through devices operating near (a) 1280 and (b) 1550 nm, with 1V bias applied and approximately 80 μW optical power propagating to the device in the input fiber before the input grating coupler.

Fig. 3.
Fig. 3.

(a) Illuminated (red) and dark (black) I–V curves for devices at 1280 nm; dark I–V sensitivity is limited to approximately 30 pA by the source-measure unit used [11] and (b) photocurrent and through-port transmission spectra around resonance in the 1550 nm device (black points), along with fit to model calculation for cavity stored energy in the presence of coupled counterpropagating modes (red line). (c) Peak QEs on resonance as a function of in-waveguide input power at five different biases applied to the device operating at 1550 nm, and (d) same data for the device at 1280 nm. Error bars correspond to ±0.15dB coupling uncertainty.

Fig. 4.
Fig. 4.

(a) Measured modulation responses in the 1280 nm detector at 0, 4, and 10 V reverse bias applied. Empirical fits along with the fit 3 dB rolloff are indicated in the legend. (b) Fit 3 dB rolloff frequency as a function of reverse bias voltage for both 1280 and 1550 nm devices (lines are a guide to the eye).

Metrics