Abstract

We report about a newly devised throughput-scalable fabrication method for high-quality periodic submicron structures. The process is demonstrated for optical transmission gratings in fused silica with a period of 800 nm (1250lines/mm) to be used in laser pulse compression. The technology is based on an innovative advancement of i-line proximity photolithography performed in a mask aligner. The aerial image is encoded in a rigorously optimized electron-beam-written three-level phase mask which is illuminated by an adapted multipole configuration of incidence angles. In comparison to conventional proximity lithography, the process enables a significantly higher resolution while maintaining a good depth of focus—in contrast to lithography based on direct Talbot-imaging. Details about the grating fabrication process and characterization of fabricated pulse compression grating wafers are presented. The gratings show a diffraction efficiency of 97% at a wavelength of 1030 nm and a wavefront error comparable to gratings fabricated by electron-beam lithography.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. B. Treacy, IEEE J. Quantum Electron. 5, 454 (1969).
    [CrossRef]
  2. D. Strickland and G. Mourou, Opt. Commun. 55, 447 (1985).
    [CrossRef]
  3. P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
    [CrossRef]
  4. U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E. B. Kley, Appl. Phys. A 109, 789 (2012).
    [CrossRef]
  5. M. Oliva, T. Harzendorf, D. Michaelis, U. D. Zeitner, and A. Tünnermann, Opt. Express 19, 14735 (2011).
    [CrossRef]
  6. M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, Opt. Eng. 30, 1590 (1991).
    [CrossRef]
  7. W. Mao, I. Wathuthanthri, and C.-H. Choi, Opt. Lett. 36, 3176 (2011).
    [CrossRef]
  8. C. Mack, Fundamental Principles of Optical Lithography (Wiley, 2007).
  9. L. Stuerzebecher, T. Harzendorf, U. Vogler, U. D. Zeitner, and R. Voelkel, Opt. Express 18, 19485 (2010).
    [CrossRef]
  10. R. Voelkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stuerzebecher, T. Harzendorf, and U. D. Zeitner, Opt. Express 18, 20968 (2010).
    [CrossRef]
  11. L. Stuerzebecher, T. Harzendorf, F. Fuchs, and U. D. Zeitner, Proc. SPIE 8249, 82490R (2012).
    [CrossRef]
  12. H. F. Talbot, Philos. Mag. 9(56), 401 (1836).
  13. L. Rayleigh, Philos. Mag. 11(67), 196 (1881).
    [CrossRef]

2012

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E. B. Kley, Appl. Phys. A 109, 789 (2012).
[CrossRef]

L. Stuerzebecher, T. Harzendorf, F. Fuchs, and U. D. Zeitner, Proc. SPIE 8249, 82490R (2012).
[CrossRef]

2011

2010

1991

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, Opt. Eng. 30, 1590 (1991).
[CrossRef]

1988

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

1985

D. Strickland and G. Mourou, Opt. Commun. 55, 447 (1985).
[CrossRef]

1969

E. B. Treacy, IEEE J. Quantum Electron. 5, 454 (1969).
[CrossRef]

1881

L. Rayleigh, Philos. Mag. 11(67), 196 (1881).
[CrossRef]

1836

H. F. Talbot, Philos. Mag. 9(56), 401 (1836).

Bado, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Benkenstein, T.

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E. B. Kley, Appl. Phys. A 109, 789 (2012).
[CrossRef]

Bich, A.

Canizares, C. R.

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, Opt. Eng. 30, 1590 (1991).
[CrossRef]

Choi, C.-H.

Cullmann, E.

Dewey, D.

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, Opt. Eng. 30, 1590 (1991).
[CrossRef]

Flanagan, K. A.

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, Opt. Eng. 30, 1590 (1991).
[CrossRef]

Fuchs, F.

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E. B. Kley, Appl. Phys. A 109, 789 (2012).
[CrossRef]

L. Stuerzebecher, T. Harzendorf, F. Fuchs, and U. D. Zeitner, Proc. SPIE 8249, 82490R (2012).
[CrossRef]

Hamnett, M.

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, Opt. Eng. 30, 1590 (1991).
[CrossRef]

Harzendorf, T.

Hornung, M.

Kley, E. B.

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E. B. Kley, Appl. Phys. A 109, 789 (2012).
[CrossRef]

Levin, A. M.

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, Opt. Eng. 30, 1590 (1991).
[CrossRef]

Mack, C.

C. Mack, Fundamental Principles of Optical Lithography (Wiley, 2007).

Maine, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Manikkalingam, R.

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, Opt. Eng. 30, 1590 (1991).
[CrossRef]

Mao, W.

Markert, T. H.

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, Opt. Eng. 30, 1590 (1991).
[CrossRef]

Michaelis, D.

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E. B. Kley, Appl. Phys. A 109, 789 (2012).
[CrossRef]

M. Oliva, T. Harzendorf, D. Michaelis, U. D. Zeitner, and A. Tünnermann, Opt. Express 19, 14735 (2011).
[CrossRef]

Mourou, G.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

D. Strickland and G. Mourou, Opt. Commun. 55, 447 (1985).
[CrossRef]

Oliva, M.

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E. B. Kley, Appl. Phys. A 109, 789 (2012).
[CrossRef]

M. Oliva, T. Harzendorf, D. Michaelis, U. D. Zeitner, and A. Tünnermann, Opt. Express 19, 14735 (2011).
[CrossRef]

Pernet, P.

Pessot, M.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Rayleigh, L.

L. Rayleigh, Philos. Mag. 11(67), 196 (1881).
[CrossRef]

Rum, K. S. K.

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, Opt. Eng. 30, 1590 (1991).
[CrossRef]

Shattenburg, M. L.

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, Opt. Eng. 30, 1590 (1991).
[CrossRef]

Smith, H. I.

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, Opt. Eng. 30, 1590 (1991).
[CrossRef]

Strickland, D.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

D. Strickland and G. Mourou, Opt. Commun. 55, 447 (1985).
[CrossRef]

Stuerzebecher, L.

Talbot, H. F.

H. F. Talbot, Philos. Mag. 9(56), 401 (1836).

Treacy, E. B.

E. B. Treacy, IEEE J. Quantum Electron. 5, 454 (1969).
[CrossRef]

Tünnermann, A.

Voelkel, R.

Vogler, U.

Wathuthanthri, I.

Weible, K. J.

Zeitner, U. D.

Zoberbier, R.

Appl. Phys. A

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E. B. Kley, Appl. Phys. A 109, 789 (2012).
[CrossRef]

IEEE J. Quantum Electron.

E. B. Treacy, IEEE J. Quantum Electron. 5, 454 (1969).
[CrossRef]

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Opt. Commun.

D. Strickland and G. Mourou, Opt. Commun. 55, 447 (1985).
[CrossRef]

Opt. Eng.

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, Opt. Eng. 30, 1590 (1991).
[CrossRef]

Opt. Express

Opt. Lett.

Philos. Mag.

H. F. Talbot, Philos. Mag. 9(56), 401 (1836).

L. Rayleigh, Philos. Mag. 11(67), 196 (1881).
[CrossRef]

Proc. SPIE

L. Stuerzebecher, T. Harzendorf, F. Fuchs, and U. D. Zeitner, Proc. SPIE 8249, 82490R (2012).
[CrossRef]

Other

C. Mack, Fundamental Principles of Optical Lithography (Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Photomask performance. (a) Surface profile (blue) and near-field diffraction pattern (normal incidence, λ=365nm, TM polarization, RCWA calculation) of the three-level phase mask. (b) Realized diffraction pattern (red) in comparison to the ideal field (black) in the working distance of the mask.

Fig. 2.
Fig. 2.

Optimization of the aerial image homogeneity by selection of the incidence angles of the mask illumination. Normal incidence (a), symmetric oblique incidence (b), and multipole illumination (c) which represents a combination of both.

Fig. 3.
Fig. 3.

Focused ion beam (FIB) cross sections of several stages of the pulse compression grating fabrication. (a) Resist profile subsequent to photolithographic exposure, post exposure bake, and development. (b) Chromium structure subsequent to chromium etch against the resist mask. (c) Fused silica structure subsequent to deep etch against the chromium hard mask. The platinum (Pt) layers have been deposited to allow FIB preparation.

Fig. 4.
Fig. 4.

Characterization of a fabricated grating wafer. The diffraction efficiency for TE polarized light was measured to exceed 97%.

Fig. 5.
Fig. 5.

Calculated diffraction efficiency (RCWA) of the pulse compression gratings for TE polarization.

Metrics