Abstract

Structured illumination microscopy (SIM) is an established technique that allows subdiffraction resolution imaging by heterodyning high sample frequencies into the system’s passband via structured illumination. However, until now, SIM has been typically used to achieve subdiffraction resolution for intensity-based imaging. Here, we present a novel optical setup that uses structured illumination with a broadband light source to obtain noise-reduced, subdiffraction resolution, quantitative phase imaging (QPM) of cells. We compare this with a previous work for subdiffraction QPM imaging via SIM that used a laser source, and was thus still corrupted by coherent noise.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Gustafsson, J. Microsc. 198, 82 (2000).
    [CrossRef]
  2. S. W. Helland and J. Wichmann, Opt. Lett. 19, 780 (1994).
    [CrossRef]
  3. B. Huang, M. Bates, and X. Zhuang, Annu. Rev. Biochem. 78, 993 (2009).
    [CrossRef]
  4. W. Lukosz, J. Opt. Soc. Am. 56, 1463 (1966).
    [CrossRef]
  5. P. Sun and E. Leith, Appl. Opt. 31, 4857 (1992).
    [CrossRef]
  6. S. Chowdhury, A. Dhalla, and J. Izatt, Biomed. Opt. Express 3, 1841 (2012).
    [CrossRef]
  7. Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. Feld, Opt. Express 17, 12285 (2009).
    [CrossRef]
  8. P. von Olshausen and A. Rohrbach, Opt. Lett. 38, 4066 (2013).
    [CrossRef]
  9. M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. Dasari, M. Feld, and W. Choi, Opt. Lett. 36, 148 (2011).
    [CrossRef]
  10. M. Rinehart, Y. Zhu, and A. Wax, Biomed. Opt. Express 3, 958 (2012).
    [CrossRef]
  11. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, Opt. Lett. 31, 178 (2006).
    [CrossRef]
  12. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, Opt. Lett. 37, 1094 (2012).
    [CrossRef]
  13. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  14. S. Chowdhury and J. Izatt, Biomed. Opt. Express 4, 1795 (2013).
    [CrossRef]

2013

2012

2011

2009

2006

2000

M. G. Gustafsson, J. Microsc. 198, 82 (2000).
[CrossRef]

1994

1992

1966

Badizadegan, K.

Bates, M.

B. Huang, M. Bates, and X. Zhuang, Annu. Rev. Biochem. 78, 993 (2009).
[CrossRef]

Bhaduri, B.

Charrière, F.

Choi, W.

Choi, Y.

Chowdhury, S.

Colomb, T.

Cuche, E.

Dasari, R.

Depeursinge, C.

Dhalla, A.

Fang-Yen, C.

Feld, M.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Gustafsson, M. G.

M. G. Gustafsson, J. Microsc. 198, 82 (2000).
[CrossRef]

Helland, S. W.

Huang, B.

B. Huang, M. Bates, and X. Zhuang, Annu. Rev. Biochem. 78, 993 (2009).
[CrossRef]

Izatt, J.

Kim, M.

Kuehn, J.

Leith, E.

Lukosz, W.

Marian, A.

Marquet, P.

Mir, M.

Montfort, F.

Park, Y.

Pham, H.

Popescu, G.

Rinehart, M.

Rohrbach, A.

Sun, P.

Sung, Y.

von Olshausen, P.

Wax, A.

Wichmann, J.

Yaqoob, Z.

Zhu, Y.

Zhuang, X.

B. Huang, M. Bates, and X. Zhuang, Annu. Rev. Biochem. 78, 993 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Optical schematic for structured illumination diffraction phase microscopy (SI-DPM) system. (b) Raw interferogram taken of endothelial progenitor cells (EPC) shows the structured illumination pattern overlayed on the carrier spatial frequency. (c) Fourier transform of raw interference pattern is shown with region of frequency space to be filtered and DC centered outlined by dashed yellow circle.

Fig. 2.
Fig. 2.

Quantitative phase images using (a), (b) laser illumination and (c), (d) broadband illumination. (a), (c) Diffraction-limited images are also compared to (b), (d) enhanced resolution images. (e)–(h) Close-ups of Group 8 El 4-5 from (a)–(d), respectively. (i), (j) Vertical and horizontal cross cuts from diffraction-limited (WF) and SI-DPM images in (g), (h), respectively.

Fig. 3.
Fig. 3.

Quantitative phase images of EPCs using (a), (b) broadband and (c), (d) laser illumination. (a), (c) Diffraction-limited images are also shown and compared to (b), (d) subdiffraction resolution images. Insets outlined in yellow shown in (a)–(d) are magnified and shown in (e)–(h), respectively. Scale bar on top right corresponds to 10 μm.

Fig. 4.
Fig. 4.

Quantitative phase images of mesenchymal stem cells using broadband illumination are shown. (a) Diffraction-limited images are compared to (b) subdiffraction resolution images. Select regions-of-interest are compared between the (c)–(e) diffraction-limited image and (c)–(e) subdiffraction resolution image. Scale bar on bottom left corresponds to 5 μm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

y(r)=hc(r)(x(r)·[hc(r)i(r)]),
Y(ω)=Hc(ω)·[X(ω)[Hc(ω)·I(ω)]],
Yn(ω)=Hc(ω)·[X(ω)+m2X(ωω0)ejϕn+m2X(ω+ω0)ejϕn].

Metrics