Abstract

Using a blue-detuned laser, shaped into a nearly Laguerre–Gaussian (LG) donut mode, we channel atoms exiting a two-dimensional magneto-optical trap (2D-MOT) over a 30 cm distance. Compared to a freely propagating beam, the atomic flux (1010at/s) is conserved whereas the divergence is reduced from 40 to 3 mrad. So, 30 cm far the 2D-MOT exit, the atomic beam has a 1 mm diameter and the atomic density is increased by a factor of 200. The LG-channeled-2D-MOT has been studied versus the order of the LG mode (from 2 to 10) and versus the laser-atom frequency detuning (from 2 to 120 GHz).

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Weyers, E. Aucouturier, C. Valentin, and N. Dimarcq, Opt. Commun. 143, 30 (1997).
    [CrossRef]
  2. K. Dieckmann, R. J. C. Spreeuw, M. Weidemuller, and J. T. M. Walraven, Phys. Rev. A 58, 3891 (1998).
    [CrossRef]
  3. J. Schoser, A. Batar, R. Low, V. Schweikhard, A. Grabowski, Y. B. Ovchinnikov, and T. Pfau, Phys. Rev. A 66, 23410 (2002).
    [CrossRef]
  4. P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, J. Opt. Soc. Am. B 6, 2084 (1989).
    [CrossRef]
  5. S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, Opt. Commun. 192, 57 (2001).
    [CrossRef]
  6. N. Friedman, A. Kaplan, and N. Davidson, Adv. At. Mol. Opt. Phys. 48, 99 (2002).
    [CrossRef]
  7. Y. Song, D. Milam, and W. T. Hill, Opt. Lett. 24, 1805 (1999).
    [CrossRef]
  8. X. Xu, K. Kim, W. Jhe, and N. Kwon, Phys. Rev. A 63, 063401 (2001).
    [CrossRef]
  9. F. K. Fatemi and M. Bashkansky, Opt. Express 14, 1368 (2006).
    [CrossRef]
  10. M. Mestre, F. Diry, B. Viaris de Lesegno, and L. Pruvost, Eur. Phys. J. D 57, 87 (2010).
    [CrossRef]
  11. For quantitative see also: R. Ozeri, L. Khaykovich, and N. Davidson, Phys. Rev. A 59, R1750 (1999).
  12. M. L. Terraciano, S. E. Olson, and F. K. Fatemi, Phys. Rev. A 84, 025402 (2011).
    [CrossRef]
  13. Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
    [CrossRef]
  14. D. P. Rhodes, G. P. T. Lancaster, J. Livesey, D. McGloin, J. Arlt, and K. Dholakia, Opt. Commun. 214, 247 (2002).
    [CrossRef]
  15. D MOT SYRTE laboratory model. P. Cheinet, “Conception et réalisation d’un gravimètre à atomes froids,” Ph.D. thesis (2006). http://tel.archives-ouvertes.fr .
  16. N. Heckenberg, R. Mc. Duff, C. Smith, and A. White, Opt. Lett. 17, 221 (1992).
    [CrossRef]
  17. J. E. Curtis and D. G. Grier, Phys. Rev. Lett. 90, 133901 (2003).
    [CrossRef]
  18. At large distances the trap diameter differs from 2Rℓ because the non-pure LG mode becomes broader. For channeling, the trap diameter is the relevant quantity.
  19. V. Carrat, “Correction dynamique d’un SLM pour une holographie de haute fidélité. Réalisation d’un MOT-2D pour l’application de modes de Laguerre-Gauss,” Ph.D. thesis (Université de Paris XI, 2013).
  20. L. Pruvost, D. Marescaux, O. Houde, and H. T. Duong, Opt. Commun. 166, 199 (1999).
    [CrossRef]
  21. For the harmonic potential, ω=(2U/m)1/2/Rℓ. For the squared potential, ω=(π/2)(2U/m)1/2/Rℓ.

2011 (1)

M. L. Terraciano, S. E. Olson, and F. K. Fatemi, Phys. Rev. A 84, 025402 (2011).
[CrossRef]

2010 (1)

M. Mestre, F. Diry, B. Viaris de Lesegno, and L. Pruvost, Eur. Phys. J. D 57, 87 (2010).
[CrossRef]

2006 (1)

2003 (1)

J. E. Curtis and D. G. Grier, Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef]

2002 (3)

D. P. Rhodes, G. P. T. Lancaster, J. Livesey, D. McGloin, J. Arlt, and K. Dholakia, Opt. Commun. 214, 247 (2002).
[CrossRef]

N. Friedman, A. Kaplan, and N. Davidson, Adv. At. Mol. Opt. Phys. 48, 99 (2002).
[CrossRef]

J. Schoser, A. Batar, R. Low, V. Schweikhard, A. Grabowski, Y. B. Ovchinnikov, and T. Pfau, Phys. Rev. A 66, 23410 (2002).
[CrossRef]

2001 (2)

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, Opt. Commun. 192, 57 (2001).
[CrossRef]

X. Xu, K. Kim, W. Jhe, and N. Kwon, Phys. Rev. A 63, 063401 (2001).
[CrossRef]

1999 (3)

For quantitative see also: R. Ozeri, L. Khaykovich, and N. Davidson, Phys. Rev. A 59, R1750 (1999).

Y. Song, D. Milam, and W. T. Hill, Opt. Lett. 24, 1805 (1999).
[CrossRef]

L. Pruvost, D. Marescaux, O. Houde, and H. T. Duong, Opt. Commun. 166, 199 (1999).
[CrossRef]

1998 (1)

K. Dieckmann, R. J. C. Spreeuw, M. Weidemuller, and J. T. M. Walraven, Phys. Rev. A 58, 3891 (1998).
[CrossRef]

1997 (1)

S. Weyers, E. Aucouturier, C. Valentin, and N. Dimarcq, Opt. Commun. 143, 30 (1997).
[CrossRef]

1996 (1)

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef]

1992 (1)

1989 (1)

Anderson, M. H.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef]

Arlt, J.

D. P. Rhodes, G. P. T. Lancaster, J. Livesey, D. McGloin, J. Arlt, and K. Dholakia, Opt. Commun. 214, 247 (2002).
[CrossRef]

Aucouturier, E.

S. Weyers, E. Aucouturier, C. Valentin, and N. Dimarcq, Opt. Commun. 143, 30 (1997).
[CrossRef]

Bashkansky, M.

Batar, A.

J. Schoser, A. Batar, R. Low, V. Schweikhard, A. Grabowski, Y. B. Ovchinnikov, and T. Pfau, Phys. Rev. A 66, 23410 (2002).
[CrossRef]

Carrat, V.

V. Carrat, “Correction dynamique d’un SLM pour une holographie de haute fidélité. Réalisation d’un MOT-2D pour l’application de modes de Laguerre-Gauss,” Ph.D. thesis (Université de Paris XI, 2013).

Cho, H.

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, Opt. Commun. 192, 57 (2001).
[CrossRef]

Cornell, E. A.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef]

Corwin, K. L.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef]

Curtis, J. E.

J. E. Curtis and D. G. Grier, Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef]

Davidson, N.

N. Friedman, A. Kaplan, and N. Davidson, Adv. At. Mol. Opt. Phys. 48, 99 (2002).
[CrossRef]

For quantitative see also: R. Ozeri, L. Khaykovich, and N. Davidson, Phys. Rev. A 59, R1750 (1999).

Dholakia, K.

D. P. Rhodes, G. P. T. Lancaster, J. Livesey, D. McGloin, J. Arlt, and K. Dholakia, Opt. Commun. 214, 247 (2002).
[CrossRef]

Dieckmann, K.

K. Dieckmann, R. J. C. Spreeuw, M. Weidemuller, and J. T. M. Walraven, Phys. Rev. A 58, 3891 (1998).
[CrossRef]

Dimarcq, N.

S. Weyers, E. Aucouturier, C. Valentin, and N. Dimarcq, Opt. Commun. 143, 30 (1997).
[CrossRef]

Diry, F.

M. Mestre, F. Diry, B. Viaris de Lesegno, and L. Pruvost, Eur. Phys. J. D 57, 87 (2010).
[CrossRef]

Duff, R. Mc.

Duong, H. T.

L. Pruvost, D. Marescaux, O. Houde, and H. T. Duong, Opt. Commun. 166, 199 (1999).
[CrossRef]

Fatemi, F. K.

M. L. Terraciano, S. E. Olson, and F. K. Fatemi, Phys. Rev. A 84, 025402 (2011).
[CrossRef]

F. K. Fatemi and M. Bashkansky, Opt. Express 14, 1368 (2006).
[CrossRef]

Friedman, N.

N. Friedman, A. Kaplan, and N. Davidson, Adv. At. Mol. Opt. Phys. 48, 99 (2002).
[CrossRef]

Grabowski, A.

J. Schoser, A. Batar, R. Low, V. Schweikhard, A. Grabowski, Y. B. Ovchinnikov, and T. Pfau, Phys. Rev. A 66, 23410 (2002).
[CrossRef]

Grier, D. G.

J. E. Curtis and D. G. Grier, Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef]

Heckenberg, N.

Hill, W. T.

Houde, O.

L. Pruvost, D. Marescaux, O. Houde, and H. T. Duong, Opt. Commun. 166, 199 (1999).
[CrossRef]

Jhe, W.

X. Xu, K. Kim, W. Jhe, and N. Kwon, Phys. Rev. A 63, 063401 (2001).
[CrossRef]

Kaplan, A.

N. Friedman, A. Kaplan, and N. Davidson, Adv. At. Mol. Opt. Phys. 48, 99 (2002).
[CrossRef]

Khaykovich, L.

For quantitative see also: R. Ozeri, L. Khaykovich, and N. Davidson, Phys. Rev. A 59, R1750 (1999).

Kim, K.

X. Xu, K. Kim, W. Jhe, and N. Kwon, Phys. Rev. A 63, 063401 (2001).
[CrossRef]

Kwon, N.

X. Xu, K. Kim, W. Jhe, and N. Kwon, Phys. Rev. A 63, 063401 (2001).
[CrossRef]

Kwon, T. Y.

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, Opt. Commun. 192, 57 (2001).
[CrossRef]

Lancaster, G. P. T.

D. P. Rhodes, G. P. T. Lancaster, J. Livesey, D. McGloin, J. Arlt, and K. Dholakia, Opt. Commun. 214, 247 (2002).
[CrossRef]

Lee, H. S.

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, Opt. Commun. 192, 57 (2001).
[CrossRef]

Lett, P. D.

Livesey, J.

D. P. Rhodes, G. P. T. Lancaster, J. Livesey, D. McGloin, J. Arlt, and K. Dholakia, Opt. Commun. 214, 247 (2002).
[CrossRef]

Low, R.

J. Schoser, A. Batar, R. Low, V. Schweikhard, A. Grabowski, Y. B. Ovchinnikov, and T. Pfau, Phys. Rev. A 66, 23410 (2002).
[CrossRef]

Lu, Z. T.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef]

Marescaux, D.

L. Pruvost, D. Marescaux, O. Houde, and H. T. Duong, Opt. Commun. 166, 199 (1999).
[CrossRef]

McGloin, D.

D. P. Rhodes, G. P. T. Lancaster, J. Livesey, D. McGloin, J. Arlt, and K. Dholakia, Opt. Commun. 214, 247 (2002).
[CrossRef]

Mestre, M.

M. Mestre, F. Diry, B. Viaris de Lesegno, and L. Pruvost, Eur. Phys. J. D 57, 87 (2010).
[CrossRef]

Milam, D.

Olson, S. E.

M. L. Terraciano, S. E. Olson, and F. K. Fatemi, Phys. Rev. A 84, 025402 (2011).
[CrossRef]

Ovchinnikov, Y. B.

J. Schoser, A. Batar, R. Low, V. Schweikhard, A. Grabowski, Y. B. Ovchinnikov, and T. Pfau, Phys. Rev. A 66, 23410 (2002).
[CrossRef]

Ozeri, R.

For quantitative see also: R. Ozeri, L. Khaykovich, and N. Davidson, Phys. Rev. A 59, R1750 (1999).

Park, S. E.

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, Opt. Commun. 192, 57 (2001).
[CrossRef]

Pfau, T.

J. Schoser, A. Batar, R. Low, V. Schweikhard, A. Grabowski, Y. B. Ovchinnikov, and T. Pfau, Phys. Rev. A 66, 23410 (2002).
[CrossRef]

Phillips, W. D.

Pruvost, L.

M. Mestre, F. Diry, B. Viaris de Lesegno, and L. Pruvost, Eur. Phys. J. D 57, 87 (2010).
[CrossRef]

L. Pruvost, D. Marescaux, O. Houde, and H. T. Duong, Opt. Commun. 166, 199 (1999).
[CrossRef]

Renn, M. J.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef]

Rhodes, D. P.

D. P. Rhodes, G. P. T. Lancaster, J. Livesey, D. McGloin, J. Arlt, and K. Dholakia, Opt. Commun. 214, 247 (2002).
[CrossRef]

Rolston, S. L.

Schoser, J.

J. Schoser, A. Batar, R. Low, V. Schweikhard, A. Grabowski, Y. B. Ovchinnikov, and T. Pfau, Phys. Rev. A 66, 23410 (2002).
[CrossRef]

Schweikhard, V.

J. Schoser, A. Batar, R. Low, V. Schweikhard, A. Grabowski, Y. B. Ovchinnikov, and T. Pfau, Phys. Rev. A 66, 23410 (2002).
[CrossRef]

Smith, C.

Song, Y.

Spreeuw, R. J. C.

K. Dieckmann, R. J. C. Spreeuw, M. Weidemuller, and J. T. M. Walraven, Phys. Rev. A 58, 3891 (1998).
[CrossRef]

Tanner, C. E.

Terraciano, M. L.

M. L. Terraciano, S. E. Olson, and F. K. Fatemi, Phys. Rev. A 84, 025402 (2011).
[CrossRef]

Valentin, C.

S. Weyers, E. Aucouturier, C. Valentin, and N. Dimarcq, Opt. Commun. 143, 30 (1997).
[CrossRef]

Viaris de Lesegno, B.

M. Mestre, F. Diry, B. Viaris de Lesegno, and L. Pruvost, Eur. Phys. J. D 57, 87 (2010).
[CrossRef]

Walraven, J. T. M.

K. Dieckmann, R. J. C. Spreeuw, M. Weidemuller, and J. T. M. Walraven, Phys. Rev. A 58, 3891 (1998).
[CrossRef]

Watts, R. N.

Weidemuller, M.

K. Dieckmann, R. J. C. Spreeuw, M. Weidemuller, and J. T. M. Walraven, Phys. Rev. A 58, 3891 (1998).
[CrossRef]

Westbrook, C. I.

Weyers, S.

S. Weyers, E. Aucouturier, C. Valentin, and N. Dimarcq, Opt. Commun. 143, 30 (1997).
[CrossRef]

White, A.

Wieman, C. E.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef]

Xu, X.

X. Xu, K. Kim, W. Jhe, and N. Kwon, Phys. Rev. A 63, 063401 (2001).
[CrossRef]

Adv. At. Mol. Opt. Phys. (1)

N. Friedman, A. Kaplan, and N. Davidson, Adv. At. Mol. Opt. Phys. 48, 99 (2002).
[CrossRef]

Eur. Phys. J. D (1)

M. Mestre, F. Diry, B. Viaris de Lesegno, and L. Pruvost, Eur. Phys. J. D 57, 87 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (4)

L. Pruvost, D. Marescaux, O. Houde, and H. T. Duong, Opt. Commun. 166, 199 (1999).
[CrossRef]

D. P. Rhodes, G. P. T. Lancaster, J. Livesey, D. McGloin, J. Arlt, and K. Dholakia, Opt. Commun. 214, 247 (2002).
[CrossRef]

S. Weyers, E. Aucouturier, C. Valentin, and N. Dimarcq, Opt. Commun. 143, 30 (1997).
[CrossRef]

S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, Opt. Commun. 192, 57 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (5)

K. Dieckmann, R. J. C. Spreeuw, M. Weidemuller, and J. T. M. Walraven, Phys. Rev. A 58, 3891 (1998).
[CrossRef]

J. Schoser, A. Batar, R. Low, V. Schweikhard, A. Grabowski, Y. B. Ovchinnikov, and T. Pfau, Phys. Rev. A 66, 23410 (2002).
[CrossRef]

X. Xu, K. Kim, W. Jhe, and N. Kwon, Phys. Rev. A 63, 063401 (2001).
[CrossRef]

For quantitative see also: R. Ozeri, L. Khaykovich, and N. Davidson, Phys. Rev. A 59, R1750 (1999).

M. L. Terraciano, S. E. Olson, and F. K. Fatemi, Phys. Rev. A 84, 025402 (2011).
[CrossRef]

Phys. Rev. Lett. (2)

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef]

J. E. Curtis and D. G. Grier, Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef]

Other (4)

At large distances the trap diameter differs from 2Rℓ because the non-pure LG mode becomes broader. For channeling, the trap diameter is the relevant quantity.

V. Carrat, “Correction dynamique d’un SLM pour une holographie de haute fidélité. Réalisation d’un MOT-2D pour l’application de modes de Laguerre-Gauss,” Ph.D. thesis (Université de Paris XI, 2013).

D MOT SYRTE laboratory model. P. Cheinet, “Conception et réalisation d’un gravimètre à atomes froids,” Ph.D. thesis (2006). http://tel.archives-ouvertes.fr .

For the harmonic potential, ω=(2U/m)1/2/Rℓ. For the squared potential, ω=(π/2)(2U/m)1/2/Rℓ.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental scheme: a 2D-MOT illuminated by the the channeling LG mode generated by a helical phase-imprinted laser beam (provided by a Ti-Sa laser). Picture (a) is the LG beam recorded at the pumping hole, (b) is its intensity profile.

Fig. 2.
Fig. 2.

LG-channeling for δ=6GHz versus the order. LG-off indicates that no LG beam is applied. Top: images recorded 300 mm after the 2D-MOT exit, displayed with automatic contrast. Bottom: profiles obtained by picture integration over 10 columns.

Fig. 3.
Fig. 3.

(a) Trap diameter and (b) trap depth along the propagation for =2 (▪), 4 (•), 6 (▴), 8 (•), 10 (▾).

Fig. 4.
Fig. 4.

Channeling versus the LG order, at δ=6GHz, P=300mW. (a) Width Δ of the S(z) profiles (•) and LG diameters (∘) at the detection location. (b) S¯=SmaxΔ (•),S¯LG-off (dashed line), efficiency S¯/S¯LG-off on the right axis. (c) Density gain s¯/s¯LG-off (•).

Fig. 5.
Fig. 5.

S¯=SmaxΔ versus the LG detuning. (•) are obtained using the S(z) FWHM, (∘) using the width provided by fitting S(z) with a multipeak function. The gray line fits the (•) data by A/δexp(Bτ/δ2), the dotted line fits the (∘) data one.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

U=(Γ/2)/(4δ/Γ)Imax/Is,

Metrics