Abstract

We demonstrate the measurement and tuning of second-to-fourth order dispersion of a silicon wire waveguide in a spectral region of low nonlinear losses. Using white light interferometry we extract the chromatic dispersion of our waveguide from 1950 to 2300 nm. Moreover we demonstrate tuning of the zero dispersion wavelength over more than 100 nm, pushing it to longer wavelength by partially underetching the waveguide.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Leuthold, C. Koos, and W. Freude, Nat. Photonics 4, 535 (2010).
    [CrossRef]
  2. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, Appl. Phys. Lett. 80, 416 (2002).
    [CrossRef]
  3. X. Liu, J. B. Driscoll, J. I. Dadap, R. M. Osgood, S. Assefa, Y. A. Vlasov, and W. M. J. Green, Opt. Express 19, 7778 (2011).
    [CrossRef]
  4. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, Nat. Photonics 4, 557 (2010).
    [CrossRef]
  5. B. Kuyken, X. Liu, M. R. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, Opt. Express 19, 20172 (2011).
    [CrossRef]
  6. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).
  7. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, Opt. Express 14, 4357 (2006).
    [CrossRef]
  8. http://www.epixfab.eu .
  9. B. Kuyken, X. Liu, G. Roelkens, R. Baets, J. Osgood, and W. M. J. Green, Opt. Lett. 36, 4401 (2011).
    [CrossRef]
  10. P. A. Merritt, R. P. Tatam, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
    [CrossRef]
  11. D. W. Kim, S. H. Kim, S. H. Lee, K.-H. Kim, J.-M. Lee, and E.-H. Lee, J. Lightwave Technol. 30, 43 (2012).
    [CrossRef]
  12. S. Mas, J. Matres, J. Marti, and C. J. Oton, IEEE Photon. J. 4, 825 (2012).
    [CrossRef]
  13. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, Opt. Express 14, 3853 (2006).
    [CrossRef]
  14. X. Liu, W. M. J. Green, X. Chen, I.-W. Hsieh, J. I. Dadap, Y. A. Vlasov, and J. Osgood, Opt. Lett. 33, 2889 (2008).
    [CrossRef]
  15. M. Erdmanis, L. Karvonen, M. R. Saleem, M. Ruoho, V. Pale, A. Tervonen, S. Honkanen, and I. Tittonen, J. Lightwave Technol. 30, 2488 (2012).
    [CrossRef]
  16. E. Hecht and A. Zajac, Optics (Addison-Wesley, 2002).
  17. J. M. Dudley and S. Coen, Opt. Lett. 27, 1180 (2002).
    [CrossRef]
  18. R. K. W. Lau, M. Mnard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, Opt. Lett. 36, 1263 (2011).
    [CrossRef]
  19. U. D. Dave, S. Uvin, B. Kuyken, S. Selvaraja, F. Leo, and G. Roelkens, Opt. Express21, 32032 (2013).
  20. F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, European Conference on Integrated Optics (ECIO 2012), Spain (2012), paper 156.
  21. N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, IEEE Photon. Technol. Lett. 24, 1536 (2012).
    [CrossRef]
  22. L. Yin, Q. Lin, and G. P. Agrawal, Opt. Lett. 32, 391 (2007).
    [CrossRef]
  23. F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” arXiv:1401.5713 (2014).

2012 (4)

S. Mas, J. Matres, J. Marti, and C. J. Oton, IEEE Photon. J. 4, 825 (2012).
[CrossRef]

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, IEEE Photon. Technol. Lett. 24, 1536 (2012).
[CrossRef]

D. W. Kim, S. H. Kim, S. H. Lee, K.-H. Kim, J.-M. Lee, and E.-H. Lee, J. Lightwave Technol. 30, 43 (2012).
[CrossRef]

M. Erdmanis, L. Karvonen, M. R. Saleem, M. Ruoho, V. Pale, A. Tervonen, S. Honkanen, and I. Tittonen, J. Lightwave Technol. 30, 2488 (2012).
[CrossRef]

2011 (4)

2010 (2)

J. Leuthold, C. Koos, and W. Freude, Nat. Photonics 4, 535 (2010).
[CrossRef]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, Nat. Photonics 4, 557 (2010).
[CrossRef]

2008 (1)

2007 (1)

2006 (2)

2002 (2)

J. M. Dudley and S. Coen, Opt. Lett. 27, 1180 (2002).
[CrossRef]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, Appl. Phys. Lett. 80, 416 (2002).
[CrossRef]

1989 (1)

P. A. Merritt, R. P. Tatam, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

Agrawal, G. P.

L. Yin, Q. Lin, and G. P. Agrawal, Opt. Lett. 32, 391 (2007).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).

Asghari, M.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, Appl. Phys. Lett. 80, 416 (2002).
[CrossRef]

Assefa, S.

Baets, R.

Chen, X.

Coen, S.

J. M. Dudley and S. Coen, Opt. Lett. 27, 1180 (2002).
[CrossRef]

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” arXiv:1401.5713 (2014).

Dadap, J. I.

Dave, U.

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” arXiv:1401.5713 (2014).

Dave, U. D.

U. D. Dave, S. Uvin, B. Kuyken, S. Selvaraja, F. Leo, and G. Roelkens, Opt. Express21, 32032 (2013).

Day, I. E.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, Appl. Phys. Lett. 80, 416 (2002).
[CrossRef]

Drake, J.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, Appl. Phys. Lett. 80, 416 (2002).
[CrossRef]

Driscoll, J. B.

Dudley, J. M.

Dulkeith, E.

Erdmanis, M.

Foster, M. A.

Freude, W.

J. Leuthold, C. Koos, and W. Freude, Nat. Photonics 4, 535 (2010).
[CrossRef]

Gaeta, A. L.

Gorza, S.-P.

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” arXiv:1401.5713 (2014).

Green, W. M. J.

Harpin, A.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, Appl. Phys. Lett. 80, 416 (2002).
[CrossRef]

Hattasan, N.

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, IEEE Photon. Technol. Lett. 24, 1536 (2012).
[CrossRef]

F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, European Conference on Integrated Optics (ECIO 2012), Spain (2012), paper 156.

Hecht, E.

E. Hecht and A. Zajac, Optics (Addison-Wesley, 2002).

Honkanen, S.

Hsieh, I.-W.

Jackson, D. A.

P. A. Merritt, R. P. Tatam, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

Karvonen, L.

Kim, D. W.

Kim, K.-H.

Kim, S. H.

Kockaert, P.

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” arXiv:1401.5713 (2014).

Koos, C.

J. Leuthold, C. Koos, and W. Freude, Nat. Photonics 4, 535 (2010).
[CrossRef]

Kuyken, B.

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, IEEE Photon. Technol. Lett. 24, 1536 (2012).
[CrossRef]

B. Kuyken, X. Liu, M. R. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, Opt. Express 19, 20172 (2011).
[CrossRef]

B. Kuyken, X. Liu, G. Roelkens, R. Baets, J. Osgood, and W. M. J. Green, Opt. Lett. 36, 4401 (2011).
[CrossRef]

F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, European Conference on Integrated Optics (ECIO 2012), Spain (2012), paper 156.

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” arXiv:1401.5713 (2014).

U. D. Dave, S. Uvin, B. Kuyken, S. Selvaraja, F. Leo, and G. Roelkens, Opt. Express21, 32032 (2013).

Lau, R. K. W.

Lee, E.-H.

Lee, J.-M.

Lee, S. H.

Leo, F.

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, IEEE Photon. Technol. Lett. 24, 1536 (2012).
[CrossRef]

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” arXiv:1401.5713 (2014).

U. D. Dave, S. Uvin, B. Kuyken, S. Selvaraja, F. Leo, and G. Roelkens, Opt. Express21, 32032 (2013).

F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, European Conference on Integrated Optics (ECIO 2012), Spain (2012), paper 156.

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, Nat. Photonics 4, 535 (2010).
[CrossRef]

Liang, T. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, Appl. Phys. Lett. 80, 416 (2002).
[CrossRef]

Lin, Q.

Lipson, M.

Liu, X.

Manolatou, C.

Marti, J.

S. Mas, J. Matres, J. Marti, and C. J. Oton, IEEE Photon. J. 4, 825 (2012).
[CrossRef]

Mas, S.

S. Mas, J. Matres, J. Marti, and C. J. Oton, IEEE Photon. J. 4, 825 (2012).
[CrossRef]

Matres, J.

S. Mas, J. Matres, J. Marti, and C. J. Oton, IEEE Photon. J. 4, 825 (2012).
[CrossRef]

Merritt, P. A.

P. A. Merritt, R. P. Tatam, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

Mnard, M.

Okawachi, Y.

Osgood, J.

Osgood, M. R.

Osgood, R. M.

Oton, C. J.

S. Mas, J. Matres, J. Marti, and C. J. Oton, IEEE Photon. J. 4, 825 (2012).
[CrossRef]

Pale, V.

Roberts, S. W.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, Appl. Phys. Lett. 80, 416 (2002).
[CrossRef]

Roelkens, G.

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, IEEE Photon. Technol. Lett. 24, 1536 (2012).
[CrossRef]

B. Kuyken, X. Liu, G. Roelkens, R. Baets, J. Osgood, and W. M. J. Green, Opt. Lett. 36, 4401 (2011).
[CrossRef]

B. Kuyken, X. Liu, M. R. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, Opt. Express 19, 20172 (2011).
[CrossRef]

F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, European Conference on Integrated Optics (ECIO 2012), Spain (2012), paper 156.

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” arXiv:1401.5713 (2014).

U. D. Dave, S. Uvin, B. Kuyken, S. Selvaraja, F. Leo, and G. Roelkens, Opt. Express21, 32032 (2013).

Ruoho, M.

Ryckeboer, E. M. P.

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, IEEE Photon. Technol. Lett. 24, 1536 (2012).
[CrossRef]

Safioui, J.

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” arXiv:1401.5713 (2014).

Saleem, M. R.

Salem, R.

Schares, L.

Schmidt, B. S.

Selvaraja, S.

U. D. Dave, S. Uvin, B. Kuyken, S. Selvaraja, F. Leo, and G. Roelkens, Opt. Express21, 32032 (2013).

Sharping, J. E.

Tatam, R. P.

P. A. Merritt, R. P. Tatam, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

Tervonen, A.

Tittonen, I.

Tsang, H. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, Appl. Phys. Lett. 80, 416 (2002).
[CrossRef]

Turner, A. C.

Turner-Foster, A. C.

Uvin, S.

U. D. Dave, S. Uvin, B. Kuyken, S. Selvaraja, F. Leo, and G. Roelkens, Opt. Express21, 32032 (2013).

Vermeulen, D.

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, IEEE Photon. Technol. Lett. 24, 1536 (2012).
[CrossRef]

Vlasov, Y. A.

Wong, C. S.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, Appl. Phys. Lett. 80, 416 (2002).
[CrossRef]

Xia, F.

Yin, L.

Zajac, A.

E. Hecht and A. Zajac, Optics (Addison-Wesley, 2002).

Appl. Phys. Lett. (1)

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, Appl. Phys. Lett. 80, 416 (2002).
[CrossRef]

IEEE Photon. J. (1)

S. Mas, J. Matres, J. Marti, and C. J. Oton, IEEE Photon. J. 4, 825 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, IEEE Photon. Technol. Lett. 24, 1536 (2012).
[CrossRef]

J. Lightwave Technol. (3)

Nat. Photonics (2)

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, Nat. Photonics 4, 557 (2010).
[CrossRef]

J. Leuthold, C. Koos, and W. Freude, Nat. Photonics 4, 535 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Other (6)

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” arXiv:1401.5713 (2014).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).

http://www.epixfab.eu .

E. Hecht and A. Zajac, Optics (Addison-Wesley, 2002).

U. D. Dave, S. Uvin, B. Kuyken, S. Selvaraja, F. Leo, and G. Roelkens, Opt. Express21, 32032 (2013).

F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, European Conference on Integrated Optics (ECIO 2012), Spain (2012), paper 156.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup used to measure the chromatic dispersion. It consists of a stabilized Mach–Zehnder interferometer with a tunable air path in one arm and a silicon waveguide in the other. SWIR: short-wave infared, OSA: optical spectrum analyzer, PC: polarization controller. PD: photodiode, PID: proportional-integral-derivative controller. As a broadband source, an IPG laser and an advalue photonics supercontinuum source (AP-SC-MIR) is used. A Yokogawa AQ6375 SWIR spectrum analyzer is used.

Fig. 2.
Fig. 2.

(a) Example of two measured interferograms (red) with the pulsed (top) and CW (bottom) sources and corresponding fits (blue) using Eq (4). Experimental data has been smoothed by a Savitsky Golay filter. (b) Extracted SOD profile of our waveguide with the pulsed (circles) and CW (dots) sources. Both are fitted with a second-order polynomial for comparison with extracted higher order dispersion. Experimental results are compared with the SOD retrieved from mode solver simulations of a 860 nm × 217 nm (dotted) waveguide. [(c) resp. (d)] Extracted third (resp. fourth) order dispersion with the pulsed (open circles) and CW (dots) sources and comparison with first (resp. second) order derivative of the parabolic fit of figure (a) (dashed) and with third order dispersion (resp. fourth order dispersion) retrieved from simulations of a 860 nm × 217 nm waveguide (dotted).

Fig. 3.
Fig. 3.

SEM picture of our sample after full underetching with overlay corresponding to the waveguide profile used in simulations. Note that platina was deposited during SEM inspection. Width and height of the simulation profile are chosen to fit the measured SOD profile [see Fig. 2(b)]. The radius of the circular undercut is retrieved from a profilometer measurement.

Fig. 4.
Fig. 4.

Extracted second (a), third (b), and fourth (c) order dispersion of the waveguides after 0 nm (dots), 55 nm (open circles), and 113 nm (triangles) underetching. These results are compared with the corresponding dispersion retrieved from simulations of a 860 nm × 217 nm waveguide with 0 nm (full), 55 nm (dashed), and 113 nm (dotted) underetching.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I out ( ω ) = I air ( ω ) + I wav ( ω ) + 2 V I air ( ω ) I wav ( ω ) cos ( ϕ ( ω ) ) ,
ϕ ( ω ) = ω c l air β ( ω ) l wav ,
ϕ ( Ω ) = ( ω 0 l air c l wav β 0 ) + Ω ( l air c l wav β 1 ) l wav ( 1 2 β 2 Ω 2 + 1 6 β 3 Ω 3 + 1 24 β 4 Ω 4 ) ,
I out ( Ω ) = I air ( Ω ) + I wav ( Ω ) + 2 V I air ( Ω ) I wav ( Ω ) cos ( ϕ ( Ω ) )
ϕ ( Ω ) = C l wav ( 1 2 β 2 Ω 2 + 1 6 β 3 Ω 3 + ) .

Metrics