Abstract

We propose a new technique that is able to generate a light beam with a controlled state of polarization (SoP) and a customized degree of polarization (DoP). The technique relies on the fact that effective depolarization can be achieved by temporally averaging a time-dependent SoP. Our proposed setup is based on a ferroelectric liquid crystal panel of retardance λ/2, with a fast polarization switching capability (33 Hz). A mathematical basis describing the experiment is given. In addition, simulation data is discussed, showing the possibility of generating any SoP with full control of the DoP. Finally, to prove the potential of the invention proposed, experimental results are provided as well, reaching an experimental minimum DoP of 0.14.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Jones, J. Opt. Soc. Am. 31, 488 (1941).
    [CrossRef]
  2. D. W. Berreman, J. Opt. Soc. Am. 62, 502 (1972).
    [CrossRef]
  3. D. H. Goldstein, Polarized Light (CRC Press, 2010).
  4. R. A. Chipman, Handbook of Optics, 2nd ed. (McGraw-Hill, 1995).
  5. A. Márquez, I. Moreno, C. Iemmi, A. Lizana, J. Campos, and M. J. Yzuel, Opt. Express 16, 1669 (2008).
    [CrossRef]
  6. B. J. DeBoo, J. M. Sasian, and R. A. Chipman, Appl. Opt. 44, 5434 (2005).
    [CrossRef]
  7. A. Pierangelo, A. Benali, M. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. De Martino, Opt. Express 19, 1582 (2011).
    [CrossRef]
  8. D. J. Diner, R. A. Chipman, N. A. Beaudry, B. Cairns, L. D. Foo, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. U. Keller, Proc. SPIE 5659, 88 (2005).
    [CrossRef]
  9. B. H. Billings, J. Opt. Soc. Am. 41, 966 (1951).
    [CrossRef]
  10. R. D. Ramkhalawon, T. G. Brown, and M. A. Alonso, Opt. Express 21, 4106 (2013).
    [CrossRef]
  11. A. Mahler and R. A. Chipman, Appl. Opt. 50, 1726 (2011).
    [CrossRef]
  12. A. Martínez, N. Beaudoin, I. Moreno, M. D. M. Sánchez-López, and P. Velásquez, J. Opt. A 8, 1013 (2006).
    [CrossRef]
  13. A. Lizana, N. Martín, M. Estapé, E. Fernández, I. Moreno, A. Márquez, C. Iemmi, J. Campos, and M. J. Yzuel, Opt. Express 17, 8491 (2009).
    [CrossRef]

2013

2011

2009

2008

2006

A. Martínez, N. Beaudoin, I. Moreno, M. D. M. Sánchez-López, and P. Velásquez, J. Opt. A 8, 1013 (2006).
[CrossRef]

2005

D. J. Diner, R. A. Chipman, N. A. Beaudry, B. Cairns, L. D. Foo, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. U. Keller, Proc. SPIE 5659, 88 (2005).
[CrossRef]

B. J. DeBoo, J. M. Sasian, and R. A. Chipman, Appl. Opt. 44, 5434 (2005).
[CrossRef]

1972

1951

1941

Alonso, M. A.

Antonelli, M.

Beaudoin, N.

A. Martínez, N. Beaudoin, I. Moreno, M. D. M. Sánchez-López, and P. Velásquez, J. Opt. A 8, 1013 (2006).
[CrossRef]

Beaudry, N. A.

D. J. Diner, R. A. Chipman, N. A. Beaudry, B. Cairns, L. D. Foo, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. U. Keller, Proc. SPIE 5659, 88 (2005).
[CrossRef]

Benali, A.

Berreman, D. W.

Billings, B. H.

Brown, T. G.

Cairns, B.

D. J. Diner, R. A. Chipman, N. A. Beaudry, B. Cairns, L. D. Foo, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. U. Keller, Proc. SPIE 5659, 88 (2005).
[CrossRef]

Campos, J.

Chipman, R. A.

A. Mahler and R. A. Chipman, Appl. Opt. 50, 1726 (2011).
[CrossRef]

B. J. DeBoo, J. M. Sasian, and R. A. Chipman, Appl. Opt. 44, 5434 (2005).
[CrossRef]

D. J. Diner, R. A. Chipman, N. A. Beaudry, B. Cairns, L. D. Foo, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. U. Keller, Proc. SPIE 5659, 88 (2005).
[CrossRef]

R. A. Chipman, Handbook of Optics, 2nd ed. (McGraw-Hill, 1995).

Cunningham, T. J.

D. J. Diner, R. A. Chipman, N. A. Beaudry, B. Cairns, L. D. Foo, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. U. Keller, Proc. SPIE 5659, 88 (2005).
[CrossRef]

De Martino, A.

DeBoo, B. J.

Diner, D. J.

D. J. Diner, R. A. Chipman, N. A. Beaudry, B. Cairns, L. D. Foo, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. U. Keller, Proc. SPIE 5659, 88 (2005).
[CrossRef]

Estapé, M.

Fernández, E.

Foo, L. D.

D. J. Diner, R. A. Chipman, N. A. Beaudry, B. Cairns, L. D. Foo, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. U. Keller, Proc. SPIE 5659, 88 (2005).
[CrossRef]

Gayet, B.

Goldstein, D. H.

D. H. Goldstein, Polarized Light (CRC Press, 2010).

Iemmi, C.

Jones, R. C.

Keller, C. U.

D. J. Diner, R. A. Chipman, N. A. Beaudry, B. Cairns, L. D. Foo, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. U. Keller, Proc. SPIE 5659, 88 (2005).
[CrossRef]

Lizana, A.

Macenka, S. A.

D. J. Diner, R. A. Chipman, N. A. Beaudry, B. Cairns, L. D. Foo, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. U. Keller, Proc. SPIE 5659, 88 (2005).
[CrossRef]

Mahler, A.

Márquez, A.

Martín, N.

Martínez, A.

A. Martínez, N. Beaudoin, I. Moreno, M. D. M. Sánchez-López, and P. Velásquez, J. Opt. A 8, 1013 (2006).
[CrossRef]

Moreno, I.

Novikova, T.

Pierangelo, A.

Ramkhalawon, R. D.

Sánchez-López, M. D. M.

A. Martínez, N. Beaudoin, I. Moreno, M. D. M. Sánchez-López, and P. Velásquez, J. Opt. A 8, 1013 (2006).
[CrossRef]

Sasian, J. M.

Seshadri, S.

D. J. Diner, R. A. Chipman, N. A. Beaudry, B. Cairns, L. D. Foo, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. U. Keller, Proc. SPIE 5659, 88 (2005).
[CrossRef]

Validire, P.

Velásquez, P.

A. Martínez, N. Beaudoin, I. Moreno, M. D. M. Sánchez-López, and P. Velásquez, J. Opt. A 8, 1013 (2006).
[CrossRef]

Yzuel, M. J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Electrical signal addressed to the FLC panel, 0<t1<T.

Fig. 2.
Fig. 2.

(a) Setup to generate a linear SoP with azimuth (α,α+90°) and a desired DoP. There are a LP and an FLC panel λ/2. In red arrays, the evolution of the polarization ellipse when the fast axis of the FLC is stable (b) at 0° and (c) at 45°.

Fig. 3.
Fig. 3.

(a) Setup to generate an elliptical SoP with azimuth (α,α+90°), ellipticity ±φ/2, and a desired DoP. There are a LP, an FLC panel λ/2, and a WP of retardance φ and orientation 45°+α. In red arrays, the evolution of the polarization ellipse when the fast axis of the FLC is stable (b) at 0° and (c) at 45°.

Fig. 4.
Fig. 4.

Total Stokes parameters when we (a) illuminate the setup of Fig. 2(a) with a linearly polarized light at 20°, (b) illuminate the setup of Fig. 3(a) with a linearly polarized light at 0°, and there is a quarter WP at 45°, and (c) illuminate the setup of Fig. 3(a) with a linearly polarized light at 20°, and there is a WP of retardance 30° orientated at 65°. (d) DoP of any of the resulting SoPs produced by our proposed setups in Figs. 2 and 3. Simulated values when using an FLC panel of φ=180° and a rotation of 45°.

Fig. 5.
Fig. 5.

Simulation of the DoP when t1=T/2. The Stokes vector measurement lasts N·T+T2.

Fig. 6.
Fig. 6.

Experimental measurements (spots) and simulated values (continuous line) when the FLC has the calibrated values of retardance and rotation. Total Stokes parameters when we (a) illuminate the setup of Fig. 2(a) with a linearly polarized light at 0° and (c) illuminate the setup of Fig. 3(a) with a linearly polarized light at 0°, and there is a quarter waveplate at 45°. Their DoPs are in (b) and (d), respectively.

Fig. 7.
Fig. 7.

(a) Minimum DoP as a function of the retardance and axes rotation of the FLC panel. Black spot corresponds to the parameters of the FLC panel used in the laboratory. Simulation when illuminating with a linear SoP at 0°. (b) Minimum DoP achievable as a function of the incident azimuth, when the FLC panel has a retardance of 165° and an axes rotation of 46.5°.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

DoP(S)=S12+S22+S32S0,0DoP1.
ST=SP+SU=(S12+S22+S32S1S2S3)+(S0S12+S22+S32)(1000).
S⃗Pnorm=(1cos2εcos2αcos2εsin2αsin2ε)T,
ST=(Tt1)(S0S1S2S3)+t1(S0S1S2S3)=T(S0S1(12t1/T)S2(12t1/T)S3(12t1/T)).
DoP(ST)=|12t1/T|,

Metrics