Abstract

We comment on the recent Letter [Opt. Lett. 38, 2666 (2013) [CrossRef]  ], in which the authors presented an imaging technique called light field moment imaging. We wish to show that this method can be associated with transport of intensity equation at the geometric optics limit.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Orth and K. B. Crozier, Opt. Lett. 38, 2666 (2013).
    [CrossRef]
  2. M. R. Teague, J. Opt. Soc. Am. 73, 1434 (1983).
    [CrossRef]
  3. M. J. Bastiaans, J. Opt. Soc. Am. A 3, 1227 (1986).
    [CrossRef]
  4. A. Semichaevsky and M. Testorf, J. Opt. Soc. Am. A 21, 2173 (2004).
    [CrossRef]
  5. Z. Zhengyun and M. Levoy, in International Conference on Computational Photography (ICCP) (IEEE, 2009), pp. 1–10.

2013

2004

1986

1983

Bastiaans, M. J.

Crozier, K. B.

Levoy, M.

Z. Zhengyun and M. Levoy, in International Conference on Computational Photography (ICCP) (IEEE, 2009), pp. 1–10.

Orth, A.

Semichaevsky, A.

Teague, M. R.

Testorf, M.

Zhengyun, Z.

Z. Zhengyun and M. Levoy, in International Conference on Computational Photography (ICCP) (IEEE, 2009), pp. 1–10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (4)

Equations on this page are rendered with MathJax. Learn more.

W(x,u)=Γ(x+x/2,xx/2)exp(i2πux)dx,
I(x)z=λx·uW(x,u)du,
uW(x,u)duW(x,u)du=12πxϕ.
I(x)zx·θL(x,θ)dθ.

Metrics