Abstract

In this Letter, we propose an efficient and accurate solution to remove temperature-dependent nonuniformity effects introduced by the imaging optics. This single-image-based approach computes optics-related fixed pattern noise (FPN) by fitting the derivatives of correction model to the gradient components, locally computed on an infrared image. A modified bilateral filtering algorithm is applied to local pixel output variations, so that the refined gradients are most likely caused by the nonuniformity associated with optics. The estimated bias field is subtracted from the raw infrared imagery to compensate the intensity variations caused by optics. The proposed method is fundamentally different from the existing nonuniformity correction (NUC) techniques developed for focal plane arrays (FPAs) and provides an essential image processing functionality to achieve completely shutterless NUC for uncooled long-wave infrared (LWIR) imaging systems.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Laveign, G. Franks, K. Sparkman, M. Prewarski, B. Nehring, and S. McHugh, Proc. SPIE 7481, 766306 (2010).
  2. Y. Cao and C. Tisse, Proc. SPIE 8704, 87042W(2013).
  3. D. L. Perry and E. L. Dereniak, Opt. Eng. 32, 1854 (1993).
    [CrossRef]
  4. H. Qin, L. Bai, Q. Liu, X. Geng, and B. Wang, Infrared Phys. Technol. 36, 10 (2010).
  5. J. G. Harris and Y.-M. Chiang, IEEE Trans. Image Process. 8, 1148 (1999).
    [CrossRef]
  6. A. Averbucha, G. Lironb, and B. Z. Bobrovskyc, Image Vis. Comput. 25, 833 (2007).
    [CrossRef]
  7. E. Vera, P. Meza, and S. Torres, Opt. Lett. 36, 172 (2011).
    [CrossRef]
  8. E. A. Vokurka, N. A. Thacker, and A. Jackson, J. Magn. Reson. Imaging 10, 550 (1999).
    [CrossRef]
  9. Y. M. Zhua and H. Benoit-Cattina, Med. Image Anal. 10, 234 (2006).
  10. T. Tasdizen, E. Jurrus, and R. T. Whitaker, in Proceedings of MICCAI Workshop on Microscopic Image Analysis with Applications in Biology (2008), pp. 51–55.
  11. C. Tomasi and R. Manduchi, in Proceedings of IEEE International Conference on Computer Vision (IEEE, 1998), pp. 839–846.
  12. Y. Cao and C. Tisse, Appl. Opt. 52, 6266 (2013).
    [CrossRef]

2013

Y. Cao and C. Tisse, Proc. SPIE 8704, 87042W(2013).

Y. Cao and C. Tisse, Appl. Opt. 52, 6266 (2013).
[CrossRef]

2011

2010

J. Laveign, G. Franks, K. Sparkman, M. Prewarski, B. Nehring, and S. McHugh, Proc. SPIE 7481, 766306 (2010).

H. Qin, L. Bai, Q. Liu, X. Geng, and B. Wang, Infrared Phys. Technol. 36, 10 (2010).

2007

A. Averbucha, G. Lironb, and B. Z. Bobrovskyc, Image Vis. Comput. 25, 833 (2007).
[CrossRef]

2006

Y. M. Zhua and H. Benoit-Cattina, Med. Image Anal. 10, 234 (2006).

1999

E. A. Vokurka, N. A. Thacker, and A. Jackson, J. Magn. Reson. Imaging 10, 550 (1999).
[CrossRef]

J. G. Harris and Y.-M. Chiang, IEEE Trans. Image Process. 8, 1148 (1999).
[CrossRef]

1993

D. L. Perry and E. L. Dereniak, Opt. Eng. 32, 1854 (1993).
[CrossRef]

Averbucha, A.

A. Averbucha, G. Lironb, and B. Z. Bobrovskyc, Image Vis. Comput. 25, 833 (2007).
[CrossRef]

Bai, L.

H. Qin, L. Bai, Q. Liu, X. Geng, and B. Wang, Infrared Phys. Technol. 36, 10 (2010).

Benoit-Cattina, H.

Y. M. Zhua and H. Benoit-Cattina, Med. Image Anal. 10, 234 (2006).

Bobrovskyc, B. Z.

A. Averbucha, G. Lironb, and B. Z. Bobrovskyc, Image Vis. Comput. 25, 833 (2007).
[CrossRef]

Cao, Y.

Y. Cao and C. Tisse, Proc. SPIE 8704, 87042W(2013).

Y. Cao and C. Tisse, Appl. Opt. 52, 6266 (2013).
[CrossRef]

Chiang, Y.-M.

J. G. Harris and Y.-M. Chiang, IEEE Trans. Image Process. 8, 1148 (1999).
[CrossRef]

Dereniak, E. L.

D. L. Perry and E. L. Dereniak, Opt. Eng. 32, 1854 (1993).
[CrossRef]

Franks, G.

J. Laveign, G. Franks, K. Sparkman, M. Prewarski, B. Nehring, and S. McHugh, Proc. SPIE 7481, 766306 (2010).

Geng, X.

H. Qin, L. Bai, Q. Liu, X. Geng, and B. Wang, Infrared Phys. Technol. 36, 10 (2010).

Harris, J. G.

J. G. Harris and Y.-M. Chiang, IEEE Trans. Image Process. 8, 1148 (1999).
[CrossRef]

Jackson, A.

E. A. Vokurka, N. A. Thacker, and A. Jackson, J. Magn. Reson. Imaging 10, 550 (1999).
[CrossRef]

Jurrus, E.

T. Tasdizen, E. Jurrus, and R. T. Whitaker, in Proceedings of MICCAI Workshop on Microscopic Image Analysis with Applications in Biology (2008), pp. 51–55.

Laveign, J.

J. Laveign, G. Franks, K. Sparkman, M. Prewarski, B. Nehring, and S. McHugh, Proc. SPIE 7481, 766306 (2010).

Lironb, G.

A. Averbucha, G. Lironb, and B. Z. Bobrovskyc, Image Vis. Comput. 25, 833 (2007).
[CrossRef]

Liu, Q.

H. Qin, L. Bai, Q. Liu, X. Geng, and B. Wang, Infrared Phys. Technol. 36, 10 (2010).

Manduchi, R.

C. Tomasi and R. Manduchi, in Proceedings of IEEE International Conference on Computer Vision (IEEE, 1998), pp. 839–846.

McHugh, S.

J. Laveign, G. Franks, K. Sparkman, M. Prewarski, B. Nehring, and S. McHugh, Proc. SPIE 7481, 766306 (2010).

Meza, P.

Nehring, B.

J. Laveign, G. Franks, K. Sparkman, M. Prewarski, B. Nehring, and S. McHugh, Proc. SPIE 7481, 766306 (2010).

Perry, D. L.

D. L. Perry and E. L. Dereniak, Opt. Eng. 32, 1854 (1993).
[CrossRef]

Prewarski, M.

J. Laveign, G. Franks, K. Sparkman, M. Prewarski, B. Nehring, and S. McHugh, Proc. SPIE 7481, 766306 (2010).

Qin, H.

H. Qin, L. Bai, Q. Liu, X. Geng, and B. Wang, Infrared Phys. Technol. 36, 10 (2010).

Sparkman, K.

J. Laveign, G. Franks, K. Sparkman, M. Prewarski, B. Nehring, and S. McHugh, Proc. SPIE 7481, 766306 (2010).

Tasdizen, T.

T. Tasdizen, E. Jurrus, and R. T. Whitaker, in Proceedings of MICCAI Workshop on Microscopic Image Analysis with Applications in Biology (2008), pp. 51–55.

Thacker, N. A.

E. A. Vokurka, N. A. Thacker, and A. Jackson, J. Magn. Reson. Imaging 10, 550 (1999).
[CrossRef]

Tisse, C.

Y. Cao and C. Tisse, Proc. SPIE 8704, 87042W(2013).

Y. Cao and C. Tisse, Appl. Opt. 52, 6266 (2013).
[CrossRef]

Tomasi, C.

C. Tomasi and R. Manduchi, in Proceedings of IEEE International Conference on Computer Vision (IEEE, 1998), pp. 839–846.

Torres, S.

Vera, E.

Vokurka, E. A.

E. A. Vokurka, N. A. Thacker, and A. Jackson, J. Magn. Reson. Imaging 10, 550 (1999).
[CrossRef]

Wang, B.

H. Qin, L. Bai, Q. Liu, X. Geng, and B. Wang, Infrared Phys. Technol. 36, 10 (2010).

Whitaker, R. T.

T. Tasdizen, E. Jurrus, and R. T. Whitaker, in Proceedings of MICCAI Workshop on Microscopic Image Analysis with Applications in Biology (2008), pp. 51–55.

Zhua, Y. M.

Y. M. Zhua and H. Benoit-Cattina, Med. Image Anal. 10, 234 (2006).

Appl. Opt.

IEEE Trans. Image Process.

J. G. Harris and Y.-M. Chiang, IEEE Trans. Image Process. 8, 1148 (1999).
[CrossRef]

Image Vis. Comput.

A. Averbucha, G. Lironb, and B. Z. Bobrovskyc, Image Vis. Comput. 25, 833 (2007).
[CrossRef]

Infrared Phys. Technol.

H. Qin, L. Bai, Q. Liu, X. Geng, and B. Wang, Infrared Phys. Technol. 36, 10 (2010).

J. Magn. Reson. Imaging

E. A. Vokurka, N. A. Thacker, and A. Jackson, J. Magn. Reson. Imaging 10, 550 (1999).
[CrossRef]

Med. Image Anal.

Y. M. Zhua and H. Benoit-Cattina, Med. Image Anal. 10, 234 (2006).

Opt. Eng.

D. L. Perry and E. L. Dereniak, Opt. Eng. 32, 1854 (1993).
[CrossRef]

Opt. Lett.

Proc. SPIE

J. Laveign, G. Franks, K. Sparkman, M. Prewarski, B. Nehring, and S. McHugh, Proc. SPIE 7481, 766306 (2010).

Y. Cao and C. Tisse, Proc. SPIE 8704, 87042W(2013).

Other

T. Tasdizen, E. Jurrus, and R. T. Whitaker, in Proceedings of MICCAI Workshop on Microscopic Image Analysis with Applications in Biology (2008), pp. 51–55.

C. Tomasi and R. Manduchi, in Proceedings of IEEE International Conference on Computer Vision (IEEE, 1998), pp. 839–846.

Supplementary Material (1)

» Media 1: AVI (7363 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Efficient and accurate solution for optics temperature-dependent NUC. (a) Infrared image before optics temperature-dependent NUC. (b) Estimated bias field to compensate the intensity variations caused by optics. (c) Optics temperature-dependent NUC result.

Fig. 2.
Fig. 2.

Modified bilateral filter is proposed to remove the gradients caused by scene objects or noises. (a) Gradients Ix directly computed on an infrared image. (b) Refined gradients using a standard averaging linear filter. (c) Refined gradients I¯x using the modified bilateral filtering algorithm.

Fig. 3.
Fig. 3.

(Media 1) Sample of optics NUC results. (a) Infrared image when chamber temperature is at 40°C in the heating process. (b) Optics NUC result of (a). (c) Infrared image when chamber temperature is at 40°C in the cooling process. (d) Optics NUC result of (c).

Fig. 4.
Fig. 4.

Evaluation of NUC accuracy. (a) Outdoor infrared image before optics NUC. (b) NUC results based on direct fitting between Cx,y(γ) and Ix,y. (c) NUC result of our proposed solution. (d) Ground truth NUC result using an external blackbody.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Cx,y(γ)=i=1i=Ni=1i=Nγij,jxijyj=mγ,
Cx,y(γ)Ix,y.
I¯x=++Iξ.c(ξ,x)·l(Iξ)dξ++c(ξ,x)·l(Iξ)dξ,
c(ξ,x)=exp(ξx22δd2).
l(Iξ)=exp(|Iξ|22δr2).
E(γ)=x=1P(Cx,yI¯x)2.
γ=(MM)1Mg,
M=(m1/dxm1/dymP/dxmP/dy),g=(I1/dx¯I1/dy¯IP/dx¯IP/dy¯).

Metrics