Abstract

We generate transform-limited WDM optical sampling pulse bursts by filtering ultrashort pulses from a mode-locked laser. A phase spatial light modulator (SLM) is used in a biased pulse shaper to circumvent the need to modulate with 2π phase wraps, which are known to limit the phase response. The arrangement compresses and retimes user-selectable bandwidths from the optical short pulse source with precise control of pulse bandwidth, pulse stream rates, and duty cycle.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Valley, Opt. Express 15, 1955 (2007).
    [CrossRef]
  2. B. L. Shoop, Photonic Analog-to-Digital Conversion (Springer, 2000).
  3. F. X. Kärtner, J. Kin, J. Chen, and A. Khilo, Frequenz 62, 171 (2008).
    [CrossRef]
  4. J. U. Kang and R. D. Esman, Electron. Lett. 35, 60 (1999).
    [CrossRef]
  5. Y. Han and B. Jalali, J. Lightwave Technol. 21, 3085 (2003).
    [CrossRef]
  6. J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, Opt. Express 16, 16509 (2008).
    [CrossRef]
  7. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, Opt. Express 15, 12949 (2007).
    [CrossRef]
  8. H. C. Hansen Mulvad, E. Palushani, H. Hu, H. Ji, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, in ECOC 2011 PDD (2011) Th.13.A.2.
  9. J. V. Howe, J. Hansryd, and C. Xu, Opt. Lett. 29, 1470 (2004).
    [CrossRef]
  10. X. Fu, H. M. Zhang, Y. Peng, and M. Y. Yao, Opt. Eng. 48, 104302 (2009).
    [CrossRef]
  11. J. Vasseur, M. Hanna, J. M. Dudley, and J.-P. Goedgebuer, Electron. Lett. 40, 901 (2004).
    [CrossRef]
  12. K. Lee, C. Shu, and H. F. Liu, IEEE J. Quantum Electron. 40, 205 (2004).
    [CrossRef]
  13. K. L. Lee, M. P. Fok, and C. Shu, Opt. Commun. 251, 149 (2005).
    [CrossRef]
  14. A. Zhang, J. Yu, L. Zhang, W. Wang, H. Hu, B. Han, Y. Jiang, and E. Yang, Proc. SPIE 7136, 71362O (2008).
  15. N. T. Hung, N.-T. Quang, M. Matsuura, and N. Kishi, J. Lightwave Technol. 30, 853 (2012).
    [CrossRef]
  16. H. Q. Lam, K. E. K. Lee, and P. H. Lim, Opt. Lett. 37, 2349 (2012).
    [CrossRef]
  17. D. Sinefeld, Y. Fattal, and D. M. Marom, Opt. Lett. 37, 4290 (2012).
    [CrossRef]
  18. D. Sinefeld, S. Ben-Ezra, C. R. Doerr, and D. M. Marom, Opt. Lett. 36, 1410 (2011).
    [CrossRef]
  19. A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
    [CrossRef]
  20. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
    [CrossRef]
  21. E. Frumker and Y. Silberberg, Opt. Lett. 32, 1384 (2007).
    [CrossRef]
  22. D. Sinefeld, C. R. Doerr, and D. M. Marom, Opt. Express 19, 14532 (2011).
    [CrossRef]
  23. X. Yi, L. Li, T. X. H. Huang, and R. A. Minasian, Opt. Lett. 37, 608 (2012).
    [CrossRef]
  24. J. C. Vaughan, T. Feurer, K. W. Stone, and K. A. Nelson, Opt. Express 14, 1314 (2006).
    [CrossRef]
  25. D. Sinefeld and D. M. Marom, J. Lightwave Technol. 29, 69 (2011).
    [CrossRef]
  26. K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, IEEE Photon. Technol. Lett. 21, 1701 (2009).
    [CrossRef]
  27. T. Xia and H. Zheng, IEEE Trans. Ind. Electron. 54, 1014 (2007).
    [CrossRef]

2012 (4)

2011 (3)

2009 (2)

X. Fu, H. M. Zhang, Y. Peng, and M. Y. Yao, Opt. Eng. 48, 104302 (2009).
[CrossRef]

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, IEEE Photon. Technol. Lett. 21, 1701 (2009).
[CrossRef]

2008 (3)

J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, Opt. Express 16, 16509 (2008).
[CrossRef]

F. X. Kärtner, J. Kin, J. Chen, and A. Khilo, Frequenz 62, 171 (2008).
[CrossRef]

A. Zhang, J. Yu, L. Zhang, W. Wang, H. Hu, B. Han, Y. Jiang, and E. Yang, Proc. SPIE 7136, 71362O (2008).

2007 (4)

2006 (1)

2005 (1)

K. L. Lee, M. P. Fok, and C. Shu, Opt. Commun. 251, 149 (2005).
[CrossRef]

2004 (3)

J. V. Howe, J. Hansryd, and C. Xu, Opt. Lett. 29, 1470 (2004).
[CrossRef]

J. Vasseur, M. Hanna, J. M. Dudley, and J.-P. Goedgebuer, Electron. Lett. 40, 901 (2004).
[CrossRef]

K. Lee, C. Shu, and H. F. Liu, IEEE J. Quantum Electron. 40, 205 (2004).
[CrossRef]

2003 (1)

2000 (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

1999 (1)

J. U. Kang and R. D. Esman, Electron. Lett. 35, 60 (1999).
[CrossRef]

1995 (1)

A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
[CrossRef]

Ben-Ezra, S.

Chen, J.

F. X. Kärtner, J. Kin, J. Chen, and A. Khilo, Frequenz 62, 171 (2008).
[CrossRef]

Clausen, A. T.

H. C. Hansen Mulvad, E. Palushani, H. Hu, H. Ji, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, in ECOC 2011 PDD (2011) Th.13.A.2.

Doerr, C. R.

Dudley, J. M.

J. Vasseur, M. Hanna, J. M. Dudley, and J.-P. Goedgebuer, Electron. Lett. 40, 901 (2004).
[CrossRef]

Esman, R. D.

J. U. Kang and R. D. Esman, Electron. Lett. 35, 60 (1999).
[CrossRef]

Fattal, Y.

Feurer, T.

Fok, M. P.

K. L. Lee, M. P. Fok, and C. Shu, Opt. Commun. 251, 149 (2005).
[CrossRef]

Foster, M. A.

Frumker, E.

Fu, X.

X. Fu, H. M. Zhang, Y. Peng, and M. Y. Yao, Opt. Eng. 48, 104302 (2009).
[CrossRef]

Gaeta, A. L.

Galili, M.

H. C. Hansen Mulvad, E. Palushani, H. Hu, H. Ji, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, in ECOC 2011 PDD (2011) Th.13.A.2.

Goedgebuer, J.-P.

J. Vasseur, M. Hanna, J. M. Dudley, and J.-P. Goedgebuer, Electron. Lett. 40, 901 (2004).
[CrossRef]

Han, B.

A. Zhang, J. Yu, L. Zhang, W. Wang, H. Hu, B. Han, Y. Jiang, and E. Yang, Proc. SPIE 7136, 71362O (2008).

Han, Y.

Hanna, M.

J. Vasseur, M. Hanna, J. M. Dudley, and J.-P. Goedgebuer, Electron. Lett. 40, 901 (2004).
[CrossRef]

Hansen Mulvad, H. C.

H. C. Hansen Mulvad, E. Palushani, H. Hu, H. Ji, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, in ECOC 2011 PDD (2011) Th.13.A.2.

Hansryd, J.

Howe, J. V.

Hu, H.

A. Zhang, J. Yu, L. Zhang, W. Wang, H. Hu, B. Han, Y. Jiang, and E. Yang, Proc. SPIE 7136, 71362O (2008).

H. C. Hansen Mulvad, E. Palushani, H. Hu, H. Ji, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, in ECOC 2011 PDD (2011) Th.13.A.2.

Huang, T. X. H.

Hung, N. T.

Hvam, J. M.

H. C. Hansen Mulvad, E. Palushani, H. Hu, H. Ji, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, in ECOC 2011 PDD (2011) Th.13.A.2.

Jalali, B.

Jeppesen, P.

H. C. Hansen Mulvad, E. Palushani, H. Hu, H. Ji, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, in ECOC 2011 PDD (2011) Th.13.A.2.

Ji, H.

H. C. Hansen Mulvad, E. Palushani, H. Hu, H. Ji, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, in ECOC 2011 PDD (2011) Th.13.A.2.

Jiang, Y.

A. Zhang, J. Yu, L. Zhang, W. Wang, H. Hu, B. Han, Y. Jiang, and E. Yang, Proc. SPIE 7136, 71362O (2008).

Kang, J. U.

J. U. Kang and R. D. Esman, Electron. Lett. 35, 60 (1999).
[CrossRef]

Kärtner, F. X.

F. X. Kärtner, J. Kin, J. Chen, and A. Khilo, Frequenz 62, 171 (2008).
[CrossRef]

J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, Opt. Express 16, 16509 (2008).
[CrossRef]

Khilo, A.

F. X. Kärtner, J. Kin, J. Chen, and A. Khilo, Frequenz 62, 171 (2008).
[CrossRef]

Kim, J.

Kin, J.

F. X. Kärtner, J. Kin, J. Chen, and A. Khilo, Frequenz 62, 171 (2008).
[CrossRef]

Kishi, N.

Lam, H. Q.

Lee, K.

K. Lee, C. Shu, and H. F. Liu, IEEE J. Quantum Electron. 40, 205 (2004).
[CrossRef]

Lee, K. E. K.

Lee, K. L.

K. L. Lee, M. P. Fok, and C. Shu, Opt. Commun. 251, 149 (2005).
[CrossRef]

Li, L.

Lim, P. H.

Lipson, M.

Liu, H. F.

K. Lee, C. Shu, and H. F. Liu, IEEE J. Quantum Electron. 40, 205 (2004).
[CrossRef]

Marom, D. M.

Matsuura, M.

Minasian, R. A.

Mino, S.

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, IEEE Photon. Technol. Lett. 21, 1701 (2009).
[CrossRef]

Nelson, K. A.

Ooba, N.

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, IEEE Photon. Technol. Lett. 21, 1701 (2009).
[CrossRef]

Oxenløwe, L. K.

H. C. Hansen Mulvad, E. Palushani, H. Hu, H. Ji, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, in ECOC 2011 PDD (2011) Th.13.A.2.

Palushani, E.

H. C. Hansen Mulvad, E. Palushani, H. Hu, H. Ji, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, in ECOC 2011 PDD (2011) Th.13.A.2.

Park, M. J.

Peng, Y.

X. Fu, H. M. Zhang, Y. Peng, and M. Y. Yao, Opt. Eng. 48, 104302 (2009).
[CrossRef]

Perrott, M. H.

Pu, M.

H. C. Hansen Mulvad, E. Palushani, H. Hu, H. Ji, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, in ECOC 2011 PDD (2011) Th.13.A.2.

Quang, N.-T.

Salem, R.

Seno, K.

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, IEEE Photon. Technol. Lett. 21, 1701 (2009).
[CrossRef]

Shoop, B. L.

B. L. Shoop, Photonic Analog-to-Digital Conversion (Springer, 2000).

Shu, C.

K. L. Lee, M. P. Fok, and C. Shu, Opt. Commun. 251, 149 (2005).
[CrossRef]

K. Lee, C. Shu, and H. F. Liu, IEEE J. Quantum Electron. 40, 205 (2004).
[CrossRef]

Silberberg, Y.

Sinefeld, D.

Stone, K. W.

Suzuki, K.

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, IEEE Photon. Technol. Lett. 21, 1701 (2009).
[CrossRef]

Turner, A. C.

Valley, G. C.

Vasseur, J.

J. Vasseur, M. Hanna, J. M. Dudley, and J.-P. Goedgebuer, Electron. Lett. 40, 901 (2004).
[CrossRef]

Vaughan, J. C.

Wang, W.

A. Zhang, J. Yu, L. Zhang, W. Wang, H. Hu, B. Han, Y. Jiang, and E. Yang, Proc. SPIE 7136, 71362O (2008).

Watanabe, K.

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, IEEE Photon. Technol. Lett. 21, 1701 (2009).
[CrossRef]

Watanabe, T.

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, IEEE Photon. Technol. Lett. 21, 1701 (2009).
[CrossRef]

Weiner, A. M.

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
[CrossRef]

Xia, T.

T. Xia and H. Zheng, IEEE Trans. Ind. Electron. 54, 1014 (2007).
[CrossRef]

Xu, C.

Yang, E.

A. Zhang, J. Yu, L. Zhang, W. Wang, H. Hu, B. Han, Y. Jiang, and E. Yang, Proc. SPIE 7136, 71362O (2008).

Yao, M. Y.

X. Fu, H. M. Zhang, Y. Peng, and M. Y. Yao, Opt. Eng. 48, 104302 (2009).
[CrossRef]

Yi, X.

Yu, J.

A. Zhang, J. Yu, L. Zhang, W. Wang, H. Hu, B. Han, Y. Jiang, and E. Yang, Proc. SPIE 7136, 71362O (2008).

Yvind, K.

H. C. Hansen Mulvad, E. Palushani, H. Hu, H. Ji, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, in ECOC 2011 PDD (2011) Th.13.A.2.

Zhang, A.

A. Zhang, J. Yu, L. Zhang, W. Wang, H. Hu, B. Han, Y. Jiang, and E. Yang, Proc. SPIE 7136, 71362O (2008).

Zhang, H. M.

X. Fu, H. M. Zhang, Y. Peng, and M. Y. Yao, Opt. Eng. 48, 104302 (2009).
[CrossRef]

Zhang, L.

A. Zhang, J. Yu, L. Zhang, W. Wang, H. Hu, B. Han, Y. Jiang, and E. Yang, Proc. SPIE 7136, 71362O (2008).

Zheng, H.

T. Xia and H. Zheng, IEEE Trans. Ind. Electron. 54, 1014 (2007).
[CrossRef]

Electron. Lett. (2)

J. U. Kang and R. D. Esman, Electron. Lett. 35, 60 (1999).
[CrossRef]

J. Vasseur, M. Hanna, J. M. Dudley, and J.-P. Goedgebuer, Electron. Lett. 40, 901 (2004).
[CrossRef]

Frequenz (1)

F. X. Kärtner, J. Kin, J. Chen, and A. Khilo, Frequenz 62, 171 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Lee, C. Shu, and H. F. Liu, IEEE J. Quantum Electron. 40, 205 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, IEEE Photon. Technol. Lett. 21, 1701 (2009).
[CrossRef]

IEEE Trans. Ind. Electron. (1)

T. Xia and H. Zheng, IEEE Trans. Ind. Electron. 54, 1014 (2007).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Commun. (1)

K. L. Lee, M. P. Fok, and C. Shu, Opt. Commun. 251, 149 (2005).
[CrossRef]

Opt. Eng. (1)

X. Fu, H. M. Zhang, Y. Peng, and M. Y. Yao, Opt. Eng. 48, 104302 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (6)

Proc. SPIE (1)

A. Zhang, J. Yu, L. Zhang, W. Wang, H. Hu, B. Han, Y. Jiang, and E. Yang, Proc. SPIE 7136, 71362O (2008).

Prog. Quantum Electron. (1)

A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
[CrossRef]

Rev. Sci. Instrum. (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Other (2)

B. L. Shoop, Photonic Analog-to-Digital Conversion (Springer, 2000).

H. C. Hansen Mulvad, E. Palushani, H. Hu, H. Ji, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, in ECOC 2011 PDD (2011) Th.13.A.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

PSP layout for generating WDM pulse streams and the experimental setup. Ultrashort pulses (100 fs) from an MLL at 80 MHz rep rate are rate increased to 2.56 GHz with five delay arms. The pulses are filtered by the LCoS processor, generating a tunable rate WDM pulse stream. Quadratic phase patterns on the LCoS generates 8×100GHz WDM pulse stream. Inset: sampling scope measurements of (a) 32 pulses directly after the five delay lines and (b) 32×8 WDM pulse stream measured after the PSP filtering.

Fig. 2.
Fig. 2.

(a) Interpretation of LCoS phase response (blue, curve) to blazed grating pattern (black, sawtooth), required for retiming in a conventional pulse shaper. (b) LCoS response to low quadratic phase in our modified, biased pulse shaper. Both designs targeted to retime BW slots, but response in (b) outperforms that of (a). Phase offset between adjacent BW slots in (b) is intentionally placed to better carve channels.

Fig. 3.
Fig. 3.

Experimental results of transform-limited WDM pulse stream generation: (i) PSP group delay and insertion loss measurements from LUNA OVA. Generated pulse streams, measured by sampling scope: (ii) zoom in and (iii) large scale. Three pulse stream rates demonstrated: (a) 4×200GHZ pulses, for 10 GHz stream rate, and d.c.=0.05; (b) 6×133GHz pulses, for 15 GHz stream rate, and d.c.=0.1; (c) 8×100GHz pulses, for 20 GHz stream rate, and d.c.=0.2. The plotted pulse widths are limited by the scope bandwidth (65 GHz) and are actually transform limited, as shown in Fig. 5.

Fig. 4.
Fig. 4.

Demonstration of wavelength distinction of 8×100GHz WDM pulses within the 20 GHz stream, by attenuating channels 5 and 8 with vertical SLM phase. (i) Spectral transmission and GD. Right—generated pulse stream (blue line): (ii) zoom in and (iii) large scale. Black dashed line shows the pulse stream without channel 5 and 8 attenuation.

Fig. 5.
Fig. 5.

Intensity autocorrelation (AC) measurement of a single pulse from the pulse stream: (a) 100 GHz pulse BW, (b) 133 GHz pulse BW, and (c) 200 GHz pulse BW. The red line was calculated by applying an FFT on the measured LUNA spectrum, proving that pulses are indeed transform limited (note that the intensity autocorrelation pulse width is 1.33 times longer than the actual pulse duration), and (d) is a zoom in on the intensity autocorrelation fringes pattern.

Fig. 6.
Fig. 6.

Real time scope results of 4×200GHz pulse stream, configured for a 10 GHz stream rate, and d.c.=0.05 (scope’s 12 GHz BW elongates pulse duration). (a) Interpolation of the temporal results showing 0.1 ns difference between pulse positions, where the pulses are timed according to the folding period; (b)–(d) histograms of the interpulses jitter, showing the temporal delay for the 3 pulses when the first pulse serves as a reference. Mean values closely match desired values and standard deviation is less than 1 ps.

Fig. 7.
Fig. 7.

Jitter histograms of the MLL source. The standard deviation of the histogram is 0.93 ps.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

CD=2λ0c0(dθdλ)2Δz,
ΔGD[ps]=CD[ps/nm]·Δλ[nm],
d.c.=τΔGD=1/ΔνCD·Δλ=(λ/Δλ)2CD·c0,

Metrics