Abstract

Large-area close-packed microlens arrays (MLAs) are highly desirable for structured light and integrated optical applications. However, efficient realization of ultralarge area MLAs with a high fill factor is still technically challenging, especially on glass material. In this Letter we propose a high-efficiency MLA fabrication method using single-pulsed femtosecond laser wet etch and close-packed quasi-periodic concave MLAs consisting of three million units fabricated on silica glass within an hour. The fabricated MLAs are demonstrated to have extreme optical smoothness (8.5nm) by an atomic force microscope. It has also been demonstrated that the profile of the quasi-periodic concave structures could be easily tuned by changing the laser scanning speed or the pulse energy. Additionally, the optical performances of the MLA diffusers were investigated by using sharp focusing, high-resolution imaging, and flat-top illumination.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Ruffieux, T. Scharf, I. Philipoussis, H. P. Herzig, R. Voelkel, and K. J. Weible, Opt. Express 16, 19541 (2008).
    [CrossRef]
  2. D. Chandra, S. Yang, and P. C. Lin, Appl. Phys. Lett. 91, 251912 (2007).
    [CrossRef]
  3. X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, Opt. Lett. 36, 4083 (2011).
    [CrossRef]
  4. M. B. Chan-Park, C. Yang, X. Guo, L. Q. Chen, S. F. Yoon, and J. H. Chun, Langmuir 24, 5492 (2008).
    [CrossRef]
  5. X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, Adv. Mater. 24, OP165 (2012).
  6. M. He, X. Yuan, J. Bu, and W. C. Cheong, Opt. Lett. 29, 1007 (2004).
    [CrossRef]
  7. A. Y. Yi and L. Li, Opt. Lett. 30, 1707 (2005).
    [CrossRef]
  8. S. Scheiding, A. Y. Yi, A. Gebhardt, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, Opt. Express 19, 23938 (2011).
    [CrossRef]
  9. F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, Opt. Express 18, 20334 (2010).
    [CrossRef]
  10. R. R. Gattass and E. Mazur, Nat. Photonics 2, 219 (2008).
    [CrossRef]
  11. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, and H. Misawa, Opt. Lett. 26, 277 (2001).
    [CrossRef]
  12. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, Opt. Express 15, 5674 (2007).
    [CrossRef]
  13. R. A. B. Devine, R. Dupre, I. Farnan, and J. J. Caponi, Phys. Rev. B 35, 2560 (1987).
    [CrossRef]
  14. D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, Appl. Phys. Lett. 97, 031109 (2010).
    [CrossRef]

2012

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, Adv. Mater. 24, OP165 (2012).

2011

2010

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, Opt. Express 18, 20334 (2010).
[CrossRef]

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

2008

R. R. Gattass and E. Mazur, Nat. Photonics 2, 219 (2008).
[CrossRef]

M. B. Chan-Park, C. Yang, X. Guo, L. Q. Chen, S. F. Yoon, and J. H. Chun, Langmuir 24, 5492 (2008).
[CrossRef]

P. Ruffieux, T. Scharf, I. Philipoussis, H. P. Herzig, R. Voelkel, and K. J. Weible, Opt. Express 16, 19541 (2008).
[CrossRef]

2007

2005

2004

2001

1987

R. A. B. Devine, R. Dupre, I. Farnan, and J. J. Caponi, Phys. Rev. B 35, 2560 (1987).
[CrossRef]

Bian, H.

Bu, J.

Caponi, J. J.

R. A. B. Devine, R. Dupre, I. Farnan, and J. J. Caponi, Phys. Rev. B 35, 2560 (1987).
[CrossRef]

Chandra, D.

D. Chandra, S. Yang, and P. C. Lin, Appl. Phys. Lett. 91, 251912 (2007).
[CrossRef]

Chan-Park, M. B.

M. B. Chan-Park, C. Yang, X. Guo, L. Q. Chen, S. F. Yoon, and J. H. Chun, Langmuir 24, 5492 (2008).
[CrossRef]

Chen, F.

Chen, L. Q.

M. B. Chan-Park, C. Yang, X. Guo, L. Q. Chen, S. F. Yoon, and J. H. Chun, Langmuir 24, 5492 (2008).
[CrossRef]

Chen, Q. D.

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

Cheong, W. C.

Chun, J. H.

M. B. Chan-Park, C. Yang, X. Guo, L. Q. Chen, S. F. Yoon, and J. H. Chun, Langmuir 24, 5492 (2008).
[CrossRef]

Devine, R. A. B.

R. A. B. Devine, R. Dupre, I. Farnan, and J. J. Caponi, Phys. Rev. B 35, 2560 (1987).
[CrossRef]

Ding, Y.

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, Adv. Mater. 24, OP165 (2012).

X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, Opt. Lett. 36, 4083 (2011).
[CrossRef]

Dupre, R.

R. A. B. Devine, R. Dupre, I. Farnan, and J. J. Caponi, Phys. Rev. B 35, 2560 (1987).
[CrossRef]

Eberhardt, R.

Fang, H. H.

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

Farnan, I.

R. A. B. Devine, R. Dupre, I. Farnan, and J. J. Caponi, Phys. Rev. B 35, 2560 (1987).
[CrossRef]

Gattass, R. R.

R. R. Gattass and E. Mazur, Nat. Photonics 2, 219 (2008).
[CrossRef]

Gebhardt, A.

Guo, X.

M. B. Chan-Park, C. Yang, X. Guo, L. Q. Chen, S. F. Yoon, and J. H. Chun, Langmuir 24, 5492 (2008).
[CrossRef]

He, M.

Herzig, H. P.

Hirao, K.

Hou, C.

Hou, X.

Juodkazis, S.

Li, L.

Li, X.

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, Adv. Mater. 24, OP165 (2012).

X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, Opt. Lett. 36, 4083 (2011).
[CrossRef]

Liang, W.

Lin, P. C.

D. Chandra, S. Yang, and P. C. Lin, Appl. Phys. Lett. 91, 251912 (2007).
[CrossRef]

Liu, H.

Marcinkevicius, A.

Matsuo, S.

Mazur, E.

R. R. Gattass and E. Mazur, Nat. Photonics 2, 219 (2008).
[CrossRef]

Misawa, H.

Miura, K.

Miwa, M.

Niu, L. G.

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

Philipoussis, I.

Risse, S.

Ruffieux, P.

Sakakura, M.

Scharf, T.

Scheiding, S.

Shao, J.

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, Adv. Mater. 24, OP165 (2012).

X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, Opt. Lett. 36, 4083 (2011).
[CrossRef]

Shimotsuma, Y.

Si, J.

Song, J. F.

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

Sun, H. B.

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

Terazima, M.

Tian, H.

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, Adv. Mater. 24, OP165 (2012).

X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, Opt. Lett. 36, 4083 (2011).
[CrossRef]

Tünnermann, A.

Voelkel, R.

Wang, R.

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

Wang, X.

Watanabe, M.

Weible, K. J.

Wu, D.

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

Wu, S. Z.

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

Yang, C.

M. B. Chan-Park, C. Yang, X. Guo, L. Q. Chen, S. F. Yoon, and J. H. Chun, Langmuir 24, 5492 (2008).
[CrossRef]

Yang, Q.

Yang, S.

D. Chandra, S. Yang, and P. C. Lin, Appl. Phys. Lett. 91, 251912 (2007).
[CrossRef]

Yi, A. Y.

Yoon, S. F.

M. B. Chan-Park, C. Yang, X. Guo, L. Q. Chen, S. F. Yoon, and J. H. Chun, Langmuir 24, 5492 (2008).
[CrossRef]

Yuan, X.

Adv. Mater.

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, Adv. Mater. 24, OP165 (2012).

Appl. Phys. Lett.

D. Chandra, S. Yang, and P. C. Lin, Appl. Phys. Lett. 91, 251912 (2007).
[CrossRef]

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

Langmuir

M. B. Chan-Park, C. Yang, X. Guo, L. Q. Chen, S. F. Yoon, and J. H. Chun, Langmuir 24, 5492 (2008).
[CrossRef]

Nat. Photonics

R. R. Gattass and E. Mazur, Nat. Photonics 2, 219 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

R. A. B. Devine, R. Dupre, I. Farnan, and J. J. Caponi, Phys. Rev. B 35, 2560 (1987).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

2D and 3D morphology of fabricated MLA. (a) Top-view and (b) 25° tilted-view SEM image of the quasi-periodic MLA. (c) LCSM image of the quasi-periodic MLA. (d) Actual profile of the microlens (solid line) and the ideal parabolic profile (dotted line). Note that (b) is the enlarged image of the boxed area of (a). The roughness of the concave surfaces Ra is about 8.5 nm when measured using an atomic force microscope for an area of 2μm×2μm on the bottom of the sag surface.

Fig. 2.
Fig. 2.

(a) The profile of fabricated microlenses under different moving velocities. Graphs (b) and (c) show a change of the aperture and sag height of the microlens with the applied scanning speed, respectively. Graph (d) shows a change of the sag height (star markers) and the aperture diameter (circle markers) with the pulse energy.

Fig. 3.
Fig. 3.

(a) The optical characterization system for MLAs. (b) The false bright focal point is observed with a CCD and the focal length is measured to be about 20 μm. (c) The false images of the letter “A” with a CCD using a substrate fabricated by applying a scanning speed of 20mm/s.

Fig. 4.
Fig. 4.

Normalized intensity distribution curves at the central horizontal line of the illumination pattern of the fabricated MLAs diffuser with a He–Ne laser (λ=632.8nm, beam radium=0.6mm, and divergence angle=1.5mrad).

Fig. 5.
Fig. 5.

Normalized intensity distribution curves at the central horizontal line of each pattern produced by fabricated quasi-periodic MLAs with different average periods of 10, 15, and 20 μm.

Tables (1)

Tables Icon

Table 1. Parameters of the Microlens Measured from Ten Microlenses

Metrics