Abstract

A highly sensitive avalanche photodiode (APD) in 0.35 μm CMOS technology is presented. Due to a thick intrinsic absorption layer, a high responsivity at a low bias voltage, where the avalanche gain is 1, is combined with an excellent avalanche gain at high voltages to achieve a maximum overall responsivity of the APD of more than 10kA/W. This responsivity exceeds that of other submicrometer CMOS APDs by a factor of more than 700. As a figure of merit the responsivity–bandwidth product is defined, and the achieved value of 23.46A/W·GHz is 2.4 times higher than the values found in the literature.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Swoboda, J. Knorr, and H. Zimmermann, IEEE J. Solid-State Circuits 40, 1521 (2005).
    [CrossRef]
  2. K. Iiyama, H. Takamatsu, and T. Maruyama, IEEE Photon. Technol. Lett. 22, 932 (2010).
    [CrossRef]
  3. B. Ciftcioglu, J. Zhang, L. Zhang, J. R. Marciante, J. D. Zuegel, R. Sobolewski, and H. Wu, IEEE Photon. Technol. Lett. 20, 2069 (2008).
    [CrossRef]
  4. F.-P. Chou, C.-W. Wang, Z.-Y. Li, Y.-C. Hsieh, and Y.-M. Hsin, IEEE Photon. Technol. Lett. 25, 659 (2013).
    [CrossRef]
  5. M.-J. Lee and W.-Y. Choi, Opt. Express 18, 24189 (2010).
    [CrossRef]
  6. M. J. Lee, H. Rücker, and W.-Y. Choi, IEEE Electron Device Lett. 33, 80 (2012).
    [CrossRef]
  7. J.-S. Youn, M.-J. Lee, K.-Y. Park, and W.-Y. Choi, IEEE J. Quantum Electron. 48, 229 (2012).
    [CrossRef]
  8. M. Atef, A. Polzer, and H. Zimmermann, IEEE J. Quantum Electron. 49, 350 (2013).
    [CrossRef]
  9. T. Shimotori, K. Maekita, T. Maruyama, and K. Iiyama, “Characterization of APDs fabricated by 0.18  μm CMOS process in blue wavelength region,” in Opto-Electronics and Communications Conference (OECC), Busan (2012), pp. 509–510.
  10. T. Shimotori, K. Maekita, R. Gyobu, and T. Maruyama, “Optimizing interdigital electrode spacing of CMOS APD for 10  Gb/s application,” in OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching (OECC/PS), Kyoto (2013), pp. 1–2.
  11. A. Rochas, A. R. Pauchard, P. A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, IEEE Trans. Electron Devices 49, 387 (2002).
    [CrossRef]

2013 (2)

F.-P. Chou, C.-W. Wang, Z.-Y. Li, Y.-C. Hsieh, and Y.-M. Hsin, IEEE Photon. Technol. Lett. 25, 659 (2013).
[CrossRef]

M. Atef, A. Polzer, and H. Zimmermann, IEEE J. Quantum Electron. 49, 350 (2013).
[CrossRef]

2012 (2)

M. J. Lee, H. Rücker, and W.-Y. Choi, IEEE Electron Device Lett. 33, 80 (2012).
[CrossRef]

J.-S. Youn, M.-J. Lee, K.-Y. Park, and W.-Y. Choi, IEEE J. Quantum Electron. 48, 229 (2012).
[CrossRef]

2010 (2)

M.-J. Lee and W.-Y. Choi, Opt. Express 18, 24189 (2010).
[CrossRef]

K. Iiyama, H. Takamatsu, and T. Maruyama, IEEE Photon. Technol. Lett. 22, 932 (2010).
[CrossRef]

2008 (1)

B. Ciftcioglu, J. Zhang, L. Zhang, J. R. Marciante, J. D. Zuegel, R. Sobolewski, and H. Wu, IEEE Photon. Technol. Lett. 20, 2069 (2008).
[CrossRef]

2005 (1)

R. Swoboda, J. Knorr, and H. Zimmermann, IEEE J. Solid-State Circuits 40, 1521 (2005).
[CrossRef]

2002 (1)

A. Rochas, A. R. Pauchard, P. A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, IEEE Trans. Electron Devices 49, 387 (2002).
[CrossRef]

Atef, M.

M. Atef, A. Polzer, and H. Zimmermann, IEEE J. Quantum Electron. 49, 350 (2013).
[CrossRef]

Besse, P. A.

A. Rochas, A. R. Pauchard, P. A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, IEEE Trans. Electron Devices 49, 387 (2002).
[CrossRef]

Choi, W.-Y.

M. J. Lee, H. Rücker, and W.-Y. Choi, IEEE Electron Device Lett. 33, 80 (2012).
[CrossRef]

J.-S. Youn, M.-J. Lee, K.-Y. Park, and W.-Y. Choi, IEEE J. Quantum Electron. 48, 229 (2012).
[CrossRef]

M.-J. Lee and W.-Y. Choi, Opt. Express 18, 24189 (2010).
[CrossRef]

Chou, F.-P.

F.-P. Chou, C.-W. Wang, Z.-Y. Li, Y.-C. Hsieh, and Y.-M. Hsin, IEEE Photon. Technol. Lett. 25, 659 (2013).
[CrossRef]

Ciftcioglu, B.

B. Ciftcioglu, J. Zhang, L. Zhang, J. R. Marciante, J. D. Zuegel, R. Sobolewski, and H. Wu, IEEE Photon. Technol. Lett. 20, 2069 (2008).
[CrossRef]

Gyobu, R.

T. Shimotori, K. Maekita, R. Gyobu, and T. Maruyama, “Optimizing interdigital electrode spacing of CMOS APD for 10  Gb/s application,” in OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching (OECC/PS), Kyoto (2013), pp. 1–2.

Hsieh, Y.-C.

F.-P. Chou, C.-W. Wang, Z.-Y. Li, Y.-C. Hsieh, and Y.-M. Hsin, IEEE Photon. Technol. Lett. 25, 659 (2013).
[CrossRef]

Hsin, Y.-M.

F.-P. Chou, C.-W. Wang, Z.-Y. Li, Y.-C. Hsieh, and Y.-M. Hsin, IEEE Photon. Technol. Lett. 25, 659 (2013).
[CrossRef]

Iiyama, K.

K. Iiyama, H. Takamatsu, and T. Maruyama, IEEE Photon. Technol. Lett. 22, 932 (2010).
[CrossRef]

T. Shimotori, K. Maekita, T. Maruyama, and K. Iiyama, “Characterization of APDs fabricated by 0.18  μm CMOS process in blue wavelength region,” in Opto-Electronics and Communications Conference (OECC), Busan (2012), pp. 509–510.

Knorr, J.

R. Swoboda, J. Knorr, and H. Zimmermann, IEEE J. Solid-State Circuits 40, 1521 (2005).
[CrossRef]

Lee, M. J.

M. J. Lee, H. Rücker, and W.-Y. Choi, IEEE Electron Device Lett. 33, 80 (2012).
[CrossRef]

Lee, M.-J.

J.-S. Youn, M.-J. Lee, K.-Y. Park, and W.-Y. Choi, IEEE J. Quantum Electron. 48, 229 (2012).
[CrossRef]

M.-J. Lee and W.-Y. Choi, Opt. Express 18, 24189 (2010).
[CrossRef]

Li, Z.-Y.

F.-P. Chou, C.-W. Wang, Z.-Y. Li, Y.-C. Hsieh, and Y.-M. Hsin, IEEE Photon. Technol. Lett. 25, 659 (2013).
[CrossRef]

Maekita, K.

T. Shimotori, K. Maekita, R. Gyobu, and T. Maruyama, “Optimizing interdigital electrode spacing of CMOS APD for 10  Gb/s application,” in OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching (OECC/PS), Kyoto (2013), pp. 1–2.

T. Shimotori, K. Maekita, T. Maruyama, and K. Iiyama, “Characterization of APDs fabricated by 0.18  μm CMOS process in blue wavelength region,” in Opto-Electronics and Communications Conference (OECC), Busan (2012), pp. 509–510.

Marciante, J. R.

B. Ciftcioglu, J. Zhang, L. Zhang, J. R. Marciante, J. D. Zuegel, R. Sobolewski, and H. Wu, IEEE Photon. Technol. Lett. 20, 2069 (2008).
[CrossRef]

Maruyama, T.

K. Iiyama, H. Takamatsu, and T. Maruyama, IEEE Photon. Technol. Lett. 22, 932 (2010).
[CrossRef]

T. Shimotori, K. Maekita, T. Maruyama, and K. Iiyama, “Characterization of APDs fabricated by 0.18  μm CMOS process in blue wavelength region,” in Opto-Electronics and Communications Conference (OECC), Busan (2012), pp. 509–510.

T. Shimotori, K. Maekita, R. Gyobu, and T. Maruyama, “Optimizing interdigital electrode spacing of CMOS APD for 10  Gb/s application,” in OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching (OECC/PS), Kyoto (2013), pp. 1–2.

Pantic, D.

A. Rochas, A. R. Pauchard, P. A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, IEEE Trans. Electron Devices 49, 387 (2002).
[CrossRef]

Park, K.-Y.

J.-S. Youn, M.-J. Lee, K.-Y. Park, and W.-Y. Choi, IEEE J. Quantum Electron. 48, 229 (2012).
[CrossRef]

Pauchard, A. R.

A. Rochas, A. R. Pauchard, P. A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, IEEE Trans. Electron Devices 49, 387 (2002).
[CrossRef]

Polzer, A.

M. Atef, A. Polzer, and H. Zimmermann, IEEE J. Quantum Electron. 49, 350 (2013).
[CrossRef]

Popovic, R. S.

A. Rochas, A. R. Pauchard, P. A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, IEEE Trans. Electron Devices 49, 387 (2002).
[CrossRef]

Prijic, Z.

A. Rochas, A. R. Pauchard, P. A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, IEEE Trans. Electron Devices 49, 387 (2002).
[CrossRef]

Rochas, A.

A. Rochas, A. R. Pauchard, P. A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, IEEE Trans. Electron Devices 49, 387 (2002).
[CrossRef]

Rücker, H.

M. J. Lee, H. Rücker, and W.-Y. Choi, IEEE Electron Device Lett. 33, 80 (2012).
[CrossRef]

Shimotori, T.

T. Shimotori, K. Maekita, T. Maruyama, and K. Iiyama, “Characterization of APDs fabricated by 0.18  μm CMOS process in blue wavelength region,” in Opto-Electronics and Communications Conference (OECC), Busan (2012), pp. 509–510.

T. Shimotori, K. Maekita, R. Gyobu, and T. Maruyama, “Optimizing interdigital electrode spacing of CMOS APD for 10  Gb/s application,” in OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching (OECC/PS), Kyoto (2013), pp. 1–2.

Sobolewski, R.

B. Ciftcioglu, J. Zhang, L. Zhang, J. R. Marciante, J. D. Zuegel, R. Sobolewski, and H. Wu, IEEE Photon. Technol. Lett. 20, 2069 (2008).
[CrossRef]

Swoboda, R.

R. Swoboda, J. Knorr, and H. Zimmermann, IEEE J. Solid-State Circuits 40, 1521 (2005).
[CrossRef]

Takamatsu, H.

K. Iiyama, H. Takamatsu, and T. Maruyama, IEEE Photon. Technol. Lett. 22, 932 (2010).
[CrossRef]

Wang, C.-W.

F.-P. Chou, C.-W. Wang, Z.-Y. Li, Y.-C. Hsieh, and Y.-M. Hsin, IEEE Photon. Technol. Lett. 25, 659 (2013).
[CrossRef]

Wu, H.

B. Ciftcioglu, J. Zhang, L. Zhang, J. R. Marciante, J. D. Zuegel, R. Sobolewski, and H. Wu, IEEE Photon. Technol. Lett. 20, 2069 (2008).
[CrossRef]

Youn, J.-S.

J.-S. Youn, M.-J. Lee, K.-Y. Park, and W.-Y. Choi, IEEE J. Quantum Electron. 48, 229 (2012).
[CrossRef]

Zhang, J.

B. Ciftcioglu, J. Zhang, L. Zhang, J. R. Marciante, J. D. Zuegel, R. Sobolewski, and H. Wu, IEEE Photon. Technol. Lett. 20, 2069 (2008).
[CrossRef]

Zhang, L.

B. Ciftcioglu, J. Zhang, L. Zhang, J. R. Marciante, J. D. Zuegel, R. Sobolewski, and H. Wu, IEEE Photon. Technol. Lett. 20, 2069 (2008).
[CrossRef]

Zimmermann, H.

M. Atef, A. Polzer, and H. Zimmermann, IEEE J. Quantum Electron. 49, 350 (2013).
[CrossRef]

R. Swoboda, J. Knorr, and H. Zimmermann, IEEE J. Solid-State Circuits 40, 1521 (2005).
[CrossRef]

Zuegel, J. D.

B. Ciftcioglu, J. Zhang, L. Zhang, J. R. Marciante, J. D. Zuegel, R. Sobolewski, and H. Wu, IEEE Photon. Technol. Lett. 20, 2069 (2008).
[CrossRef]

IEEE Electron Device Lett. (1)

M. J. Lee, H. Rücker, and W.-Y. Choi, IEEE Electron Device Lett. 33, 80 (2012).
[CrossRef]

IEEE J. Quantum Electron. (2)

J.-S. Youn, M.-J. Lee, K.-Y. Park, and W.-Y. Choi, IEEE J. Quantum Electron. 48, 229 (2012).
[CrossRef]

M. Atef, A. Polzer, and H. Zimmermann, IEEE J. Quantum Electron. 49, 350 (2013).
[CrossRef]

IEEE J. Solid-State Circuits (1)

R. Swoboda, J. Knorr, and H. Zimmermann, IEEE J. Solid-State Circuits 40, 1521 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

K. Iiyama, H. Takamatsu, and T. Maruyama, IEEE Photon. Technol. Lett. 22, 932 (2010).
[CrossRef]

B. Ciftcioglu, J. Zhang, L. Zhang, J. R. Marciante, J. D. Zuegel, R. Sobolewski, and H. Wu, IEEE Photon. Technol. Lett. 20, 2069 (2008).
[CrossRef]

F.-P. Chou, C.-W. Wang, Z.-Y. Li, Y.-C. Hsieh, and Y.-M. Hsin, IEEE Photon. Technol. Lett. 25, 659 (2013).
[CrossRef]

IEEE Trans. Electron Devices (1)

A. Rochas, A. R. Pauchard, P. A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, IEEE Trans. Electron Devices 49, 387 (2002).
[CrossRef]

Opt. Express (1)

Other (2)

T. Shimotori, K. Maekita, T. Maruyama, and K. Iiyama, “Characterization of APDs fabricated by 0.18  μm CMOS process in blue wavelength region,” in Opto-Electronics and Communications Conference (OECC), Busan (2012), pp. 509–510.

T. Shimotori, K. Maekita, R. Gyobu, and T. Maruyama, “Optimizing interdigital electrode spacing of CMOS APD for 10  Gb/s application,” in OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching (OECC/PS), Kyoto (2013), pp. 1–2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Cross section of APD.

Fig. 2.
Fig. 2.

Microphotograph of APD.

Fig. 3.
Fig. 3.

Electric field distribution of the APD at 29 V reverse bias (simulated with MEDICI).

Fig. 4.
Fig. 4.

Measured dark current versus reverse bias. Popt, optical input power.

Fig. 5.
Fig. 5.

Measured responsivity and gain at 670 nm light.

Fig. 6.
Fig. 6.

Responsivity versus optical input power at different reverse bias voltages (Vbias=25V, Vbias=30V, Vbias=33.5V).

Fig. 7.
Fig. 7.

Capacitance versus bias voltage.

Fig. 8.
Fig. 8.

Measured frequency response at 30 V reverse bias voltage with 670 nm light at 14 μW optical input power.

Fig. 9.
Fig. 9.

Responsivity versus bandwidth for different optical input powers (670 nm light) at 30 V reverse bias voltage (for optical input power of 14 μW, 2.2 μW, 700 nW, and 220 nW).

Fig. 10.
Fig. 10.

Bandwidth versus bias voltage for 14 μW optical power (670 nm light).

Tables (1)

Tables Icon

Table 1. Comparison with State of the Arta

Metrics