Abstract

We demonstrate that the experimental strain-optic coefficients for strong guided modes are not consistent with the accepted photoelastic theory. It is shown that for modes with significant nonparaxial components, such as modes guided by strong refractive index differences or in waveguides with dimensions that are much larger than the wavelengths used, the photoelastic theory should be modified to include the effect of the longitudinal components of the electromagnetic fields of the modes. Moreover, we highlight that the strain-optics coefficients depend on the state of polarization of the mode and provide a formula to calculate the necessary corrections.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
    [CrossRef]
  2. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, Adv. Opt. Photon. 1, 107 (2009).
    [CrossRef]
  3. J. Albert, L.-Y. Shao, and C. Caucheteur, Laser Photonics Rev. 7, 83 (2013).
    [CrossRef]
  4. T. Erdogan and J. E. Sipe, J. Opt. Soc. Am. A 13, 296 (1996).
    [CrossRef]
  5. G. Laffont and P. Ferdinand, Meas. Sci. Technol. 12, 765 (2001).
    [CrossRef]
  6. C. Chen and J. Albert, Electron. Lett. 42, 1027 (2006).
    [CrossRef]
  7. A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).
  8. C. D. Butter and G. B. Hocker, Appl. Opt. 17, 2867 (1978).
    [CrossRef]
  9. S. Afshar and T. M. Monro, Opt. Express 17, 2298 (2009).
    [CrossRef]
  10. H. Kogelnik, in Integrated Optics, T. Tamir, ed. (Springer-Verlag, 1979).

2013 (1)

J. Albert, L.-Y. Shao, and C. Caucheteur, Laser Photonics Rev. 7, 83 (2013).
[CrossRef]

2009 (2)

2006 (1)

C. Chen and J. Albert, Electron. Lett. 42, 1027 (2006).
[CrossRef]

2003 (1)

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

2001 (1)

G. Laffont and P. Ferdinand, Meas. Sci. Technol. 12, 765 (2001).
[CrossRef]

1996 (1)

1978 (1)

Afshar, S.

Albert, J.

J. Albert, L.-Y. Shao, and C. Caucheteur, Laser Photonics Rev. 7, 83 (2013).
[CrossRef]

C. Chen and J. Albert, Electron. Lett. 42, 1027 (2006).
[CrossRef]

Brambilla, G.

Butter, C. D.

Caucheteur, C.

J. Albert, L.-Y. Shao, and C. Caucheteur, Laser Photonics Rev. 7, 83 (2013).
[CrossRef]

Chen, C.

C. Chen and J. Albert, Electron. Lett. 42, 1027 (2006).
[CrossRef]

Erdogan, T.

Feng, X.

Ferdinand, P.

G. Laffont and P. Ferdinand, Meas. Sci. Technol. 12, 765 (2001).
[CrossRef]

Hocker, G. B.

Horak, P.

James, S. W.

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

Jung, Y.

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).

Kogelnik, H.

H. Kogelnik, in Integrated Optics, T. Tamir, ed. (Springer-Verlag, 1979).

Koizumi, F.

Koukharenko, E.

Laffont, G.

G. Laffont and P. Ferdinand, Meas. Sci. Technol. 12, 765 (2001).
[CrossRef]

Monro, T. M.

Murugan, G. S.

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).

Richardson, D. J.

Sessions, N. P.

Shao, L.-Y.

J. Albert, L.-Y. Shao, and C. Caucheteur, Laser Photonics Rev. 7, 83 (2013).
[CrossRef]

Sipe, J. E.

Tatam, R. P.

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

Wilkinson, J. S.

Xu, F.

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Electron. Lett. (1)

C. Chen and J. Albert, Electron. Lett. 42, 1027 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Laser Photonics Rev. (1)

J. Albert, L.-Y. Shao, and C. Caucheteur, Laser Photonics Rev. 7, 83 (2013).
[CrossRef]

Meas. Sci. Technol. (2)

G. Laffont and P. Ferdinand, Meas. Sci. Technol. 12, 765 (2001).
[CrossRef]

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

Opt. Express (1)

Other (2)

H. Kogelnik, in Integrated Optics, T. Tamir, ed. (Springer-Verlag, 1979).

A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Transmission spectrum of a 10° TFBG measured in air and used for experiments and sketch of the light coupling mechanism for TFBGs.

Fig. 2.
Fig. 2.

Relative wavelength variations as a function of the axial strain for core mode and some cladding modes.

Fig. 3.
Fig. 3.

Zoom on a pair of resonances located 87 nm away from the Bragg wavelength for two axial strain values.

Fig. 4.
Fig. 4.

Wavelength variation as a function of axial strain for S and P (SOP) and delta of wavelength of variation.

Fig. 5.
Fig. 5.

Comparison of experimental and simulated pcore and pclad (between 1522 and 1575 nm).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

λcladj=(neff,core+neff,cladj)Λ,
Δλcladj=λcladj(1pcladj)Δs,
pcladj=1(neff,core+neff,cladj)(neff,core+neff,cladj)s.
neff,cladjs=neff,cladjnns+neff,cladjDDs.
ns=12n3(p12ν(p11+p12))=0.296,
nzs=nz32(p112νp12)=0.044.
neff=cP(WTWZ),
neffs=cP(WTsWZs),
WT=[12ϵ0nx2ET2+12μ0HT2]dxdy,
WZ=[12ϵ0nZ2EZ2+12μ0HZ2]dxdy,
neffs=cP(2nxWTEnxsaWZEbWZH),

Metrics