Abstract

Dichromatic phosphor-converted (pc) light-emitting diodes (LEDs) with low circadian action are proposed for low-luminance photobiologically safe outdoor illumination. The LEDs feature the partial conversion of blue radiation in an orange phosphor with the resulting correlated color temperature in the “firelight” range of 1700–2500 K. The circadian action factor, which is the ratio of the biological efficacy of radiation due to the excitation of intrinsically photosensitive retinal ganglion cells to the mesopic luminous efficacy of radiation, is considerably lower than that of commercial white pc LEDs. The equivalent general color-rendering index estimated with regard to the reduced color-discrimination ability of human vision at low luminances has appropriate values in between those of common white pc LEDs and high-pressure sodium lamp.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription