Abstract

Utilizing two-photon excitation in hot Rb vapor we demonstrate the generation of collimated optical fields at 420 and 1324 nm. Input laser beams at 780 and 776 nm enter a heated Rb vapor cell collinear and circularly polarized, driving Rb atoms to the 5D5/2 state. Under phase-matching conditions coherence among the 5S1/25P3/25D5/26P3/2 transitions produces a blue (420 nm) beam by four-wave mixing. We also observe a forward and backward propagating IR (1324 nm) beam, due to cascading decays through the 6S1/25P1/2 states. Power saturation of the generated beams is investigated by scaling the input powers to greater than 200 mW, resulting in a coherent blue beam of 9.1 mW power, almost an order of magnitude larger than previously achieved. We measure the dependences of both beams in relation to the Rb density, the frequency detuning between Rb ground-state hyperfine levels, and the input laser intensities.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Akulshin, R. J. McLean, A. I. Sidorov, and P. Hannaford, Opt. Express 17, 22861 (2009).
    [CrossRef]
  2. T. Meijer, J. D. White, B. Smeets, M. Jeppesen, and R. E. Scholten, Opt. Lett. 31, 1002 (2006).
    [CrossRef]
  3. A. Vernier, S. Franke-Arnold, E. Riis, and A. S. Arnold, Opt. Express 18, 17020 (2010).
    [CrossRef]
  4. F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, Phys. Rev. A 78, 013834 (2008).
    [CrossRef]
  5. A. Akulshin, C. Perrella, G.-W. Truong, R. McLean, and A. Luiten, J. Phys. B 45, 245503 (2012).
    [CrossRef]
  6. A. S. Zibrov, M. D. Lukin, L. Hollberg, and M. O. Skully, Phys. Rev. A 65, 051801(R) (2002).
    [CrossRef]
  7. A. Akulshin, C. Perrella, G.-W. Truong, A. Luiten, D. Budker, and R. McLean, “Linewidth of collimated wavelength-converted emission in Rb vapours,” arXiv:1301.7117 (2013).
  8. A. M. Akulshin, A. A. Orel, and R. J. McLean, J. Phys. B 45, 015401 (2012).
    [CrossRef]
  9. E. Brekke and L. Alderson, Opt. Lett. 38, 2147 (2013).
    [CrossRef]
  10. C. V. Sulham, G. A. Pitz, and G. P. Perram, Appl. Phys. B 101, 57 (2010).
    [CrossRef]
  11. J. T. Schultz, S. Abend, D. Doring, J. E. Debs, P. A. Altin, J. D. White, N. P. Robins, and J. D. Close, Opt. Lett. 34, 2321 (2009).
    [CrossRef]
  12. O. S. Heavens, J. Opt. Soc. Am. 51, 1058 (1961).
    [CrossRef]
  13. A. M. Akulshin, B. V. Hall, V. Ivannikov, A. A. Orel, and A. I. Sidorov, J. Phys. B 44, 215401 (2011).
    [CrossRef]
  14. G. Walker, A. S. Arnold, and S. Franke-Arnold, Phys. Rev. Lett. 108, 243601 (2012).
    [CrossRef]
  15. R. W. Boyd, M. S. Malcuit, D. J. Gauthier, and K. Rzazewski, Phys. Rev. A 35, 1648 (1987).
    [CrossRef]
  16. D. A. Steck, http://steck.us/alkalidata (Revision 2.1.6, 20September, 2013).
  17. A. S. Zibrov, L. Hollberg, V. L. Velichansky, M. O. Scully, M. D. Lukin, H. G. Robinson, A. B. Matsko, A. V. Taichenachev, and V. I. Yudin, AIP Conf. Proc. 551, 204 (2001).
    [CrossRef]
  18. A. Akulshin, D. Budker, and R. McLean, “Directional infrared emission resulting from cascade population inversion and four-wave mixing in Rb vapours,” arXiv:1311.0071 (2013).

2013 (1)

2012 (3)

A. Akulshin, C. Perrella, G.-W. Truong, R. McLean, and A. Luiten, J. Phys. B 45, 245503 (2012).
[CrossRef]

A. M. Akulshin, A. A. Orel, and R. J. McLean, J. Phys. B 45, 015401 (2012).
[CrossRef]

G. Walker, A. S. Arnold, and S. Franke-Arnold, Phys. Rev. Lett. 108, 243601 (2012).
[CrossRef]

2011 (1)

A. M. Akulshin, B. V. Hall, V. Ivannikov, A. A. Orel, and A. I. Sidorov, J. Phys. B 44, 215401 (2011).
[CrossRef]

2010 (2)

C. V. Sulham, G. A. Pitz, and G. P. Perram, Appl. Phys. B 101, 57 (2010).
[CrossRef]

A. Vernier, S. Franke-Arnold, E. Riis, and A. S. Arnold, Opt. Express 18, 17020 (2010).
[CrossRef]

2009 (2)

2008 (1)

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, Phys. Rev. A 78, 013834 (2008).
[CrossRef]

2006 (1)

2002 (1)

A. S. Zibrov, M. D. Lukin, L. Hollberg, and M. O. Skully, Phys. Rev. A 65, 051801(R) (2002).
[CrossRef]

2001 (1)

A. S. Zibrov, L. Hollberg, V. L. Velichansky, M. O. Scully, M. D. Lukin, H. G. Robinson, A. B. Matsko, A. V. Taichenachev, and V. I. Yudin, AIP Conf. Proc. 551, 204 (2001).
[CrossRef]

1987 (1)

R. W. Boyd, M. S. Malcuit, D. J. Gauthier, and K. Rzazewski, Phys. Rev. A 35, 1648 (1987).
[CrossRef]

1961 (1)

Abend, S.

Akulshin, A.

A. Akulshin, C. Perrella, G.-W. Truong, R. McLean, and A. Luiten, J. Phys. B 45, 245503 (2012).
[CrossRef]

A. Akulshin, C. Perrella, G.-W. Truong, A. Luiten, D. Budker, and R. McLean, “Linewidth of collimated wavelength-converted emission in Rb vapours,” arXiv:1301.7117 (2013).

A. Akulshin, D. Budker, and R. McLean, “Directional infrared emission resulting from cascade population inversion and four-wave mixing in Rb vapours,” arXiv:1311.0071 (2013).

Akulshin, A. M.

A. M. Akulshin, A. A. Orel, and R. J. McLean, J. Phys. B 45, 015401 (2012).
[CrossRef]

A. M. Akulshin, B. V. Hall, V. Ivannikov, A. A. Orel, and A. I. Sidorov, J. Phys. B 44, 215401 (2011).
[CrossRef]

A. M. Akulshin, R. J. McLean, A. I. Sidorov, and P. Hannaford, Opt. Express 17, 22861 (2009).
[CrossRef]

Alderson, L.

Altin, P. A.

Arnold, A. S.

G. Walker, A. S. Arnold, and S. Franke-Arnold, Phys. Rev. Lett. 108, 243601 (2012).
[CrossRef]

A. Vernier, S. Franke-Arnold, E. Riis, and A. S. Arnold, Opt. Express 18, 17020 (2010).
[CrossRef]

Becerra, F. E.

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, Phys. Rev. A 78, 013834 (2008).
[CrossRef]

Boyd, R. W.

R. W. Boyd, M. S. Malcuit, D. J. Gauthier, and K. Rzazewski, Phys. Rev. A 35, 1648 (1987).
[CrossRef]

Brekke, E.

Budker, D.

A. Akulshin, D. Budker, and R. McLean, “Directional infrared emission resulting from cascade population inversion and four-wave mixing in Rb vapours,” arXiv:1311.0071 (2013).

A. Akulshin, C. Perrella, G.-W. Truong, A. Luiten, D. Budker, and R. McLean, “Linewidth of collimated wavelength-converted emission in Rb vapours,” arXiv:1301.7117 (2013).

Close, J. D.

Debs, J. E.

Doring, D.

Franke-Arnold, S.

G. Walker, A. S. Arnold, and S. Franke-Arnold, Phys. Rev. Lett. 108, 243601 (2012).
[CrossRef]

A. Vernier, S. Franke-Arnold, E. Riis, and A. S. Arnold, Opt. Express 18, 17020 (2010).
[CrossRef]

Gauthier, D. J.

R. W. Boyd, M. S. Malcuit, D. J. Gauthier, and K. Rzazewski, Phys. Rev. A 35, 1648 (1987).
[CrossRef]

Hall, B. V.

A. M. Akulshin, B. V. Hall, V. Ivannikov, A. A. Orel, and A. I. Sidorov, J. Phys. B 44, 215401 (2011).
[CrossRef]

Hannaford, P.

Heavens, O. S.

Hollberg, L.

A. S. Zibrov, M. D. Lukin, L. Hollberg, and M. O. Skully, Phys. Rev. A 65, 051801(R) (2002).
[CrossRef]

A. S. Zibrov, L. Hollberg, V. L. Velichansky, M. O. Scully, M. D. Lukin, H. G. Robinson, A. B. Matsko, A. V. Taichenachev, and V. I. Yudin, AIP Conf. Proc. 551, 204 (2001).
[CrossRef]

Ivannikov, V.

A. M. Akulshin, B. V. Hall, V. Ivannikov, A. A. Orel, and A. I. Sidorov, J. Phys. B 44, 215401 (2011).
[CrossRef]

Jeppesen, M.

Luiten, A.

A. Akulshin, C. Perrella, G.-W. Truong, R. McLean, and A. Luiten, J. Phys. B 45, 245503 (2012).
[CrossRef]

A. Akulshin, C. Perrella, G.-W. Truong, A. Luiten, D. Budker, and R. McLean, “Linewidth of collimated wavelength-converted emission in Rb vapours,” arXiv:1301.7117 (2013).

Lukin, M. D.

A. S. Zibrov, M. D. Lukin, L. Hollberg, and M. O. Skully, Phys. Rev. A 65, 051801(R) (2002).
[CrossRef]

A. S. Zibrov, L. Hollberg, V. L. Velichansky, M. O. Scully, M. D. Lukin, H. G. Robinson, A. B. Matsko, A. V. Taichenachev, and V. I. Yudin, AIP Conf. Proc. 551, 204 (2001).
[CrossRef]

Malcuit, M. S.

R. W. Boyd, M. S. Malcuit, D. J. Gauthier, and K. Rzazewski, Phys. Rev. A 35, 1648 (1987).
[CrossRef]

Matsko, A. B.

A. S. Zibrov, L. Hollberg, V. L. Velichansky, M. O. Scully, M. D. Lukin, H. G. Robinson, A. B. Matsko, A. V. Taichenachev, and V. I. Yudin, AIP Conf. Proc. 551, 204 (2001).
[CrossRef]

McLean, R.

A. Akulshin, C. Perrella, G.-W. Truong, R. McLean, and A. Luiten, J. Phys. B 45, 245503 (2012).
[CrossRef]

A. Akulshin, C. Perrella, G.-W. Truong, A. Luiten, D. Budker, and R. McLean, “Linewidth of collimated wavelength-converted emission in Rb vapours,” arXiv:1301.7117 (2013).

A. Akulshin, D. Budker, and R. McLean, “Directional infrared emission resulting from cascade population inversion and four-wave mixing in Rb vapours,” arXiv:1311.0071 (2013).

McLean, R. J.

A. M. Akulshin, A. A. Orel, and R. J. McLean, J. Phys. B 45, 015401 (2012).
[CrossRef]

A. M. Akulshin, R. J. McLean, A. I. Sidorov, and P. Hannaford, Opt. Express 17, 22861 (2009).
[CrossRef]

Meijer, T.

Orel, A. A.

A. M. Akulshin, A. A. Orel, and R. J. McLean, J. Phys. B 45, 015401 (2012).
[CrossRef]

A. M. Akulshin, B. V. Hall, V. Ivannikov, A. A. Orel, and A. I. Sidorov, J. Phys. B 44, 215401 (2011).
[CrossRef]

Orozco, L. A.

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, Phys. Rev. A 78, 013834 (2008).
[CrossRef]

Perram, G. P.

C. V. Sulham, G. A. Pitz, and G. P. Perram, Appl. Phys. B 101, 57 (2010).
[CrossRef]

Perrella, C.

A. Akulshin, C. Perrella, G.-W. Truong, R. McLean, and A. Luiten, J. Phys. B 45, 245503 (2012).
[CrossRef]

A. Akulshin, C. Perrella, G.-W. Truong, A. Luiten, D. Budker, and R. McLean, “Linewidth of collimated wavelength-converted emission in Rb vapours,” arXiv:1301.7117 (2013).

Pitz, G. A.

C. V. Sulham, G. A. Pitz, and G. P. Perram, Appl. Phys. B 101, 57 (2010).
[CrossRef]

Riis, E.

Robins, N. P.

Robinson, H. G.

A. S. Zibrov, L. Hollberg, V. L. Velichansky, M. O. Scully, M. D. Lukin, H. G. Robinson, A. B. Matsko, A. V. Taichenachev, and V. I. Yudin, AIP Conf. Proc. 551, 204 (2001).
[CrossRef]

Rolston, S. L.

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, Phys. Rev. A 78, 013834 (2008).
[CrossRef]

Rzazewski, K.

R. W. Boyd, M. S. Malcuit, D. J. Gauthier, and K. Rzazewski, Phys. Rev. A 35, 1648 (1987).
[CrossRef]

Scholten, R. E.

Schultz, J. T.

Scully, M. O.

A. S. Zibrov, L. Hollberg, V. L. Velichansky, M. O. Scully, M. D. Lukin, H. G. Robinson, A. B. Matsko, A. V. Taichenachev, and V. I. Yudin, AIP Conf. Proc. 551, 204 (2001).
[CrossRef]

Sidorov, A. I.

A. M. Akulshin, B. V. Hall, V. Ivannikov, A. A. Orel, and A. I. Sidorov, J. Phys. B 44, 215401 (2011).
[CrossRef]

A. M. Akulshin, R. J. McLean, A. I. Sidorov, and P. Hannaford, Opt. Express 17, 22861 (2009).
[CrossRef]

Skully, M. O.

A. S. Zibrov, M. D. Lukin, L. Hollberg, and M. O. Skully, Phys. Rev. A 65, 051801(R) (2002).
[CrossRef]

Smeets, B.

Sulham, C. V.

C. V. Sulham, G. A. Pitz, and G. P. Perram, Appl. Phys. B 101, 57 (2010).
[CrossRef]

Taichenachev, A. V.

A. S. Zibrov, L. Hollberg, V. L. Velichansky, M. O. Scully, M. D. Lukin, H. G. Robinson, A. B. Matsko, A. V. Taichenachev, and V. I. Yudin, AIP Conf. Proc. 551, 204 (2001).
[CrossRef]

Truong, G.-W.

A. Akulshin, C. Perrella, G.-W. Truong, R. McLean, and A. Luiten, J. Phys. B 45, 245503 (2012).
[CrossRef]

A. Akulshin, C. Perrella, G.-W. Truong, A. Luiten, D. Budker, and R. McLean, “Linewidth of collimated wavelength-converted emission in Rb vapours,” arXiv:1301.7117 (2013).

Velichansky, V. L.

A. S. Zibrov, L. Hollberg, V. L. Velichansky, M. O. Scully, M. D. Lukin, H. G. Robinson, A. B. Matsko, A. V. Taichenachev, and V. I. Yudin, AIP Conf. Proc. 551, 204 (2001).
[CrossRef]

Vernier, A.

Walker, G.

G. Walker, A. S. Arnold, and S. Franke-Arnold, Phys. Rev. Lett. 108, 243601 (2012).
[CrossRef]

White, J. D.

Willis, R. T.

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, Phys. Rev. A 78, 013834 (2008).
[CrossRef]

Yudin, V. I.

A. S. Zibrov, L. Hollberg, V. L. Velichansky, M. O. Scully, M. D. Lukin, H. G. Robinson, A. B. Matsko, A. V. Taichenachev, and V. I. Yudin, AIP Conf. Proc. 551, 204 (2001).
[CrossRef]

Zibrov, A. S.

A. S. Zibrov, M. D. Lukin, L. Hollberg, and M. O. Skully, Phys. Rev. A 65, 051801(R) (2002).
[CrossRef]

A. S. Zibrov, L. Hollberg, V. L. Velichansky, M. O. Scully, M. D. Lukin, H. G. Robinson, A. B. Matsko, A. V. Taichenachev, and V. I. Yudin, AIP Conf. Proc. 551, 204 (2001).
[CrossRef]

AIP Conf. Proc. (1)

A. S. Zibrov, L. Hollberg, V. L. Velichansky, M. O. Scully, M. D. Lukin, H. G. Robinson, A. B. Matsko, A. V. Taichenachev, and V. I. Yudin, AIP Conf. Proc. 551, 204 (2001).
[CrossRef]

Appl. Phys. B (1)

C. V. Sulham, G. A. Pitz, and G. P. Perram, Appl. Phys. B 101, 57 (2010).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. B (3)

A. M. Akulshin, B. V. Hall, V. Ivannikov, A. A. Orel, and A. I. Sidorov, J. Phys. B 44, 215401 (2011).
[CrossRef]

A. Akulshin, C. Perrella, G.-W. Truong, R. McLean, and A. Luiten, J. Phys. B 45, 245503 (2012).
[CrossRef]

A. M. Akulshin, A. A. Orel, and R. J. McLean, J. Phys. B 45, 015401 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (3)

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, Phys. Rev. A 78, 013834 (2008).
[CrossRef]

A. S. Zibrov, M. D. Lukin, L. Hollberg, and M. O. Skully, Phys. Rev. A 65, 051801(R) (2002).
[CrossRef]

R. W. Boyd, M. S. Malcuit, D. J. Gauthier, and K. Rzazewski, Phys. Rev. A 35, 1648 (1987).
[CrossRef]

Phys. Rev. Lett. (1)

G. Walker, A. S. Arnold, and S. Franke-Arnold, Phys. Rev. Lett. 108, 243601 (2012).
[CrossRef]

Other (3)

D. A. Steck, http://steck.us/alkalidata (Revision 2.1.6, 20September, 2013).

A. Akulshin, C. Perrella, G.-W. Truong, A. Luiten, D. Budker, and R. McLean, “Linewidth of collimated wavelength-converted emission in Rb vapours,” arXiv:1301.7117 (2013).

A. Akulshin, D. Budker, and R. McLean, “Directional infrared emission resulting from cascade population inversion and four-wave mixing in Rb vapours,” arXiv:1311.0071 (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Relevant Rb energy levels. Excitation lasers (cw) are present at 780 and 776 nm while collimated output beams are observed at 420 and 1324 nm. (b) Schematic of the experimental setup.

Fig. 2.
Fig. 2.

Generated blue beam power as a function of the 780 nm laser frequency, referenced to Rb85 ground hyperfine state absorption peaks (shown in the upper trace). Vapor cell temperatures are given, with * denoting a shift in the laser beams foci to the entrance of the vapor cell.

Fig. 3.
Fig. 3.

(a) Output blue power measured while varying 780 nm input power and holding the 776 nm input power at its maximum value. (b) Blue power measured while varying the 776 nm input power and holding the 780 nm input power at its maximum value.

Fig. 4.
Fig. 4.

(a) Forward IR beam power as the input 780 nm laser is scanned in frequency. The upper curve references our laser detunings to Rb absorption resonances. (b) Forward IR power dependence on input laser powers (as one input beam power is adjusted the other is held constant at its maximum power). (c) The forward blue and backward IR beams measured simultaneously as the 776 nm frequency is varied.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ=σ01+4(Δ/Γ)2+(I/Isat),

Metrics