Abstract

Dynamic light scattering-based optical coherence tomography approaches have been successfully implemented to measure total transverse (xy) flow speed, but are unable to resolve directionality. We propose a method to extract directional velocity in the transverse plane by introducing a variable scan bias to our system. Our velocity estimation, which yields the directional velocity component along the scan axis, is also independent of any point-spread function calibration. By combining our approach with Doppler velocimetry, we show three-component velocimetry that is appropriately dependent on latitudinal and longitudinal angle.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Dover, 2000).
  2. Y. Imai and K. Tanaka, J. Opt. Soc. Am. A 16, 2007 (1999).
    [CrossRef]
  3. Y. Wang and R. K. Wang, Opt. Lett. 35, 3538 (2010).
    [CrossRef]
  4. V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, Biomed. Opt. Express 3, 612 (2012).
    [CrossRef]
  5. J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas, Opt. Express 20, 22262 (2012).
    [CrossRef]
  6. S. Broillet, S. Geissbuehler, A. Sato, C. Pache, A. Bouwens, D. Szlag, T. Lasser, and M. Leutenegger, in SPIE Photonics West (2013), Vol 8590.
  7. X. Liu, Y. Huang, J. C. Ramella-Roman, S. A. Mathews, and J. U. Kang, Opt. Lett. 38, 805 (2013).
    [CrossRef]
  8. Y. Imai and K. Iimura, Opt. Commun. 271, 219 (2007).
    [CrossRef]
  9. X. Pan, H. Yu, X. Shi, V. Korzh, and T. Wohland, J. Biomed. Opt. 12, 014034 (2007).
  10. J. P. Skinner, Y. Chen, and J. D. Muller, Biophys. J. 89, 1288 (2005).
  11. V. J. Srinivasan, S. Sakadzic, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, Opt. Express 18, 2477 (2010).
    [CrossRef]
  12. D. E. Koppel, Phys. Rev. A 10, 1938 (1974).
    [CrossRef]
  13. N. Weiss, T. G. van Leeuwen, and J. Kalkman, Phys. Rev. E 88, 042312 (2013).
    [CrossRef]

2013 (2)

X. Liu, Y. Huang, J. C. Ramella-Roman, S. A. Mathews, and J. U. Kang, Opt. Lett. 38, 805 (2013).
[CrossRef]

N. Weiss, T. G. van Leeuwen, and J. Kalkman, Phys. Rev. E 88, 042312 (2013).
[CrossRef]

2012 (2)

2010 (2)

2007 (2)

Y. Imai and K. Iimura, Opt. Commun. 271, 219 (2007).
[CrossRef]

X. Pan, H. Yu, X. Shi, V. Korzh, and T. Wohland, J. Biomed. Opt. 12, 014034 (2007).

2005 (1)

J. P. Skinner, Y. Chen, and J. D. Muller, Biophys. J. 89, 1288 (2005).

1999 (1)

1974 (1)

D. E. Koppel, Phys. Rev. A 10, 1938 (1974).
[CrossRef]

Barry, S.

Berne, B. J.

B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Dover, 2000).

Boas, D. A.

Bouwens, A.

S. Broillet, S. Geissbuehler, A. Sato, C. Pache, A. Bouwens, D. Szlag, T. Lasser, and M. Leutenegger, in SPIE Photonics West (2013), Vol 8590.

Broillet, S.

S. Broillet, S. Geissbuehler, A. Sato, C. Pache, A. Bouwens, D. Szlag, T. Lasser, and M. Leutenegger, in SPIE Photonics West (2013), Vol 8590.

Cable, A. E.

Chen, Y.

J. P. Skinner, Y. Chen, and J. D. Muller, Biophys. J. 89, 1288 (2005).

Fujimoto, J. G.

Geissbuehler, S.

S. Broillet, S. Geissbuehler, A. Sato, C. Pache, A. Bouwens, D. Szlag, T. Lasser, and M. Leutenegger, in SPIE Photonics West (2013), Vol 8590.

Gorczynska, I.

Huang, Y.

Iimura, K.

Y. Imai and K. Iimura, Opt. Commun. 271, 219 (2007).
[CrossRef]

Imai, Y.

Y. Imai and K. Iimura, Opt. Commun. 271, 219 (2007).
[CrossRef]

Y. Imai and K. Tanaka, J. Opt. Soc. Am. A 16, 2007 (1999).
[CrossRef]

Jiang, J. Y.

Kalkman, J.

N. Weiss, T. G. van Leeuwen, and J. Kalkman, Phys. Rev. E 88, 042312 (2013).
[CrossRef]

Kang, J. U.

Koppel, D. E.

D. E. Koppel, Phys. Rev. A 10, 1938 (1974).
[CrossRef]

Korzh, V.

X. Pan, H. Yu, X. Shi, V. Korzh, and T. Wohland, J. Biomed. Opt. 12, 014034 (2007).

Lasser, T.

S. Broillet, S. Geissbuehler, A. Sato, C. Pache, A. Bouwens, D. Szlag, T. Lasser, and M. Leutenegger, in SPIE Photonics West (2013), Vol 8590.

Lee, J.

Leutenegger, M.

S. Broillet, S. Geissbuehler, A. Sato, C. Pache, A. Bouwens, D. Szlag, T. Lasser, and M. Leutenegger, in SPIE Photonics West (2013), Vol 8590.

Liu, X.

Lo, E. H.

Mandeville, E. T.

Mathews, S. A.

Muller, J. D.

J. P. Skinner, Y. Chen, and J. D. Muller, Biophys. J. 89, 1288 (2005).

Pache, C.

S. Broillet, S. Geissbuehler, A. Sato, C. Pache, A. Bouwens, D. Szlag, T. Lasser, and M. Leutenegger, in SPIE Photonics West (2013), Vol 8590.

Pan, X.

X. Pan, H. Yu, X. Shi, V. Korzh, and T. Wohland, J. Biomed. Opt. 12, 014034 (2007).

Pecora, R.

B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Dover, 2000).

Radhakrishnan, H.

Ramella-Roman, J. C.

Ruvinskaya, S.

Sakadzic, S.

Sato, A.

S. Broillet, S. Geissbuehler, A. Sato, C. Pache, A. Bouwens, D. Szlag, T. Lasser, and M. Leutenegger, in SPIE Photonics West (2013), Vol 8590.

Shi, X.

X. Pan, H. Yu, X. Shi, V. Korzh, and T. Wohland, J. Biomed. Opt. 12, 014034 (2007).

Skinner, J. P.

J. P. Skinner, Y. Chen, and J. D. Muller, Biophys. J. 89, 1288 (2005).

Srinivasan, V. J.

Szlag, D.

S. Broillet, S. Geissbuehler, A. Sato, C. Pache, A. Bouwens, D. Szlag, T. Lasser, and M. Leutenegger, in SPIE Photonics West (2013), Vol 8590.

Tanaka, K.

van Leeuwen, T. G.

N. Weiss, T. G. van Leeuwen, and J. Kalkman, Phys. Rev. E 88, 042312 (2013).
[CrossRef]

Wang, R. K.

Wang, Y.

Weiss, N.

N. Weiss, T. G. van Leeuwen, and J. Kalkman, Phys. Rev. E 88, 042312 (2013).
[CrossRef]

Wohland, T.

X. Pan, H. Yu, X. Shi, V. Korzh, and T. Wohland, J. Biomed. Opt. 12, 014034 (2007).

Wu, W.

Yu, H.

X. Pan, H. Yu, X. Shi, V. Korzh, and T. Wohland, J. Biomed. Opt. 12, 014034 (2007).

Zhu, B.

Biomed. Opt. Express (1)

Biophys. J. (1)

J. P. Skinner, Y. Chen, and J. D. Muller, Biophys. J. 89, 1288 (2005).

J. Biomed. Opt. (1)

X. Pan, H. Yu, X. Shi, V. Korzh, and T. Wohland, J. Biomed. Opt. 12, 014034 (2007).

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

Y. Imai and K. Iimura, Opt. Commun. 271, 219 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (1)

D. E. Koppel, Phys. Rev. A 10, 1938 (1974).
[CrossRef]

Phys. Rev. E (1)

N. Weiss, T. G. van Leeuwen, and J. Kalkman, Phys. Rev. E 88, 042312 (2013).
[CrossRef]

Other (2)

B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Dover, 2000).

S. Broillet, S. Geissbuehler, A. Sato, C. Pache, A. Bouwens, D. Szlag, T. Lasser, and M. Leutenegger, in SPIE Photonics West (2013), Vol 8590.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Symmetry breaking and directional ambiguity resolution using a scan bias. (a) Three frames of reference: flow, scanning, and measurement, with angles defined. Definition of latitudinal angle θ and longitudinal (azimuthal) angle ϕ. (b) Theoretical decay rate-scan bias curve, based on Eq. (1), showing the case where vxflow is the only component of fluid flow (dashed) versus the case of nonzero orthogonal motion and diffusion (solid). (c) Theoretical autocorrelation curves of two scan biases, vxscan=0 (dark) and vxscan=vxflow (light), the widths of which represent two points along curve 1(b). (inset) Sample autocorrelation curve from data.

Fig. 2.
Fig. 2.

Estimation of directional transverse flow. (a) Orientation of capillary tube. (b) Decay rate γmeas across capillary tube at three different scan biases: 44mm/s (dark), 22mm/s (medium), 44mm/s (light). (c) Representative decay rate-scan bias curve (circles) with fit to Eq. (3) (line), where the minimum corresponds to vxscan=vxflow. (d) Plot of estimate of vxflow as a function of depth of capillary tube (circle-line), theoretical prediction (solid line), and Doppler measure (dashed line).

Fig. 3.
Fig. 3.

(a) Measurement of |vxflow/v| (dark circles) and |vyflow/v| (light circles) both with scanning DLS-OCT as a function of azimuthal angle ϕ. (b) Total speed |v| as a function of azimuthal angle. (c) Measurement of |vxflow/v| with scanning DLS-OCT (dark circles) and |vzflow/v| using Doppler (light circles) as a function of latitudinal angle θ. (d) Total speed |v| as function of latitudinal angle.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G(r,τ)=e2ikvzτe4k2D|τ|evz2τ2/wz2e(vx2+vy2)τ2/wxy2.
γmeas={(vxflowvxscan)2/wxy2+(vyflow)2/wxy2+(vzflow)2/wz2+4k2D/τ}1/2.
γmeas=A{(Bvxscan)2+C}1/2,

Metrics