Abstract

We present an enhanced technique for dispersion-free pulse shortening, which exploits the interplay of different third-order nonlinear effects in a waveguide structure. When exceeding a certain value of the pulse energy coupled into the waveguide, the typical oscillations of self-phase modulation (SPM)-broadened spectra vanish during pulse propagation. Such smoothed spectra ensure a high pulse quality of the spectrally filtered and, therefore, temporally shortened pulses independently of the filtering position. A reduction of the pulse duration from 138 to 24 ps has been achieved while preserving a high temporal quality. To the best of our knowledge, the nonlinear smoothing of SPM-broadened spectra is used in the context of dispersion-free pulse duration reduction for the first time.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, Opt. Lett. 22, 381 (1997).
    [CrossRef]
  2. A. Agnesi, L. Carrà, F. Pirzio, and G. Reali, Appl. Phys. B 109, 659 (2012).
    [CrossRef]
  3. G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, J. Opt. Soc. Am. B 16, 376 (1999).
    [CrossRef]
  4. A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
    [CrossRef]
  5. A. Steinmetz, F. Jansen, F. Stutzki, R. Lehneis, J. Limpert, and A. Tünnermann, Opt. Lett. 37, 2550 (2012).
    [CrossRef]
  6. R. Lehneis, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Lett. 37, 4401 (2012).
    [CrossRef]
  7. R. Lehneis, A. Steinmetz, J. Limpert, and A. Tünnermann, Opt. Lett. 38, 2478 (2013).
    [CrossRef]
  8. P. N. Kean, K. Smith, and W. Sibbett, IEE Proc. J. 134, 163 (1987).
    [CrossRef]
  9. M. Santagiustina, P. Balan, and C. De Angelis, Opt. Commun. 100, 197 (1993).
    [CrossRef]
  10. E. Mehner, A. Steinmann, R. Hegenbarth, H. Giessen, and B. Braun, Appl. Phys. B 112, 231 (2013).
    [CrossRef]

2013 (2)

R. Lehneis, A. Steinmetz, J. Limpert, and A. Tünnermann, Opt. Lett. 38, 2478 (2013).
[CrossRef]

E. Mehner, A. Steinmann, R. Hegenbarth, H. Giessen, and B. Braun, Appl. Phys. B 112, 231 (2013).
[CrossRef]

2012 (3)

2009 (1)

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

1999 (1)

1997 (1)

1993 (1)

M. Santagiustina, P. Balan, and C. De Angelis, Opt. Commun. 100, 197 (1993).
[CrossRef]

1987 (1)

P. N. Kean, K. Smith, and W. Sibbett, IEE Proc. J. 134, 163 (1987).
[CrossRef]

Agnesi, A.

A. Agnesi, L. Carrà, F. Pirzio, and G. Reali, Appl. Phys. B 109, 659 (2012).
[CrossRef]

Balan, P.

M. Santagiustina, P. Balan, and C. De Angelis, Opt. Commun. 100, 197 (1993).
[CrossRef]

Braun, B.

Carrà, L.

A. Agnesi, L. Carrà, F. Pirzio, and G. Reali, Appl. Phys. B 109, 659 (2012).
[CrossRef]

De Angelis, C.

M. Santagiustina, P. Balan, and C. De Angelis, Opt. Commun. 100, 197 (1993).
[CrossRef]

Fluck, R.

Giessen, H.

E. Mehner, A. Steinmann, R. Hegenbarth, H. Giessen, and B. Braun, Appl. Phys. B 112, 231 (2013).
[CrossRef]

Gini, E.

Hegenbarth, R.

E. Mehner, A. Steinmann, R. Hegenbarth, H. Giessen, and B. Braun, Appl. Phys. B 112, 231 (2013).
[CrossRef]

Hohmuth, R.

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

Jansen, F.

Jauregui, C.

Kärtner, F. X.

Kean, P. N.

P. N. Kean, K. Smith, and W. Sibbett, IEE Proc. J. 134, 163 (1987).
[CrossRef]

Keller, U.

Lehneis, R.

Limpert, J.

Mehner, E.

E. Mehner, A. Steinmann, R. Hegenbarth, H. Giessen, and B. Braun, Appl. Phys. B 112, 231 (2013).
[CrossRef]

Moser, M.

Nodop, D.

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

Paschotta, R.

Pirzio, F.

A. Agnesi, L. Carrà, F. Pirzio, and G. Reali, Appl. Phys. B 109, 659 (2012).
[CrossRef]

Reali, G.

A. Agnesi, L. Carrà, F. Pirzio, and G. Reali, Appl. Phys. B 109, 659 (2012).
[CrossRef]

Richter, W.

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

Santagiustina, M.

M. Santagiustina, P. Balan, and C. De Angelis, Opt. Commun. 100, 197 (1993).
[CrossRef]

Sibbett, W.

P. N. Kean, K. Smith, and W. Sibbett, IEE Proc. J. 134, 163 (1987).
[CrossRef]

Smith, K.

P. N. Kean, K. Smith, and W. Sibbett, IEE Proc. J. 134, 163 (1987).
[CrossRef]

Spühler, G. J.

Steinmann, A.

E. Mehner, A. Steinmann, R. Hegenbarth, H. Giessen, and B. Braun, Appl. Phys. B 112, 231 (2013).
[CrossRef]

Steinmetz, A.

Stutzki, F.

Tünnermann, A.

Zhang, G.

Appl. Phys. B (3)

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

A. Agnesi, L. Carrà, F. Pirzio, and G. Reali, Appl. Phys. B 109, 659 (2012).
[CrossRef]

E. Mehner, A. Steinmann, R. Hegenbarth, H. Giessen, and B. Braun, Appl. Phys. B 112, 231 (2013).
[CrossRef]

IEE Proc. J. (1)

P. N. Kean, K. Smith, and W. Sibbett, IEE Proc. J. 134, 163 (1987).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

M. Santagiustina, P. Balan, and C. De Angelis, Opt. Commun. 100, 197 (1993).
[CrossRef]

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scheme of the experimental setup showing the fiber-amplified microchip laser (MCL), the passive SM fiber, and the bandpass filter (VBG). An optical spectrum analyzer (OSA) and a fast photodiode (PD) are used for characterization.

Fig. 2.
Fig. 2.

(a) Normalized filtered spectrum (red line) obtained after filtering a purely SPM-broadened spectrum (blue line), (b) wide scan of the normalized SPM spectrum, and (c) corresponding normalized PD signal of the filtered pulses.

Fig. 3.
Fig. 3.

(a) Normalized filtered spectrum (red line) obtained after filtering a smoothed SPM-broadened spectrum (blue line) and (b) corresponding normalized PD signal of the filtered pulses.

Fig. 4.
Fig. 4.

Normalized SPM-broadened spectra with increasing pulse energies of (a) 0.59 μJ, (b) 0.67 μJ, and (c) 0.85 μJ coupled into the passive fiber.

Fig. 5.
Fig. 5.

Corresponding wide scan of the normalized SPM spectra with increasing pulse energies of (a) 0.59 μJ, (b) 0.67 μJ, and (c) 0.85 μJ coupled into the passive fiber.

Metrics