Abstract

We studied the effects of absorption and radiative decay rates of surface plasmon polaritons on the field enhancement in periodic metallic arrays by temporal coupled mode theory and finite-difference time-domain simulation. When two rates are equal, the field enhancement is the strongest and the peak height of the orthogonal reflectivity reaches 0.25. To demonstrate this fact, we fabricated two series of two-dimensional Au and Ag nanohole arrays with different geometries and measured their corresponding reflectivity and decay rates. The experimental results agree well with the analytical and numerical results.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Application, (Springer, 2007).
  2. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
    [CrossRef]
  3. H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
    [CrossRef]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
    [CrossRef]
  5. M. L. Juan, M. Righini, and R. Quidant, Nat. Photonics 5, 349 (2011).
    [CrossRef]
  6. A. Linic, P. Christopher, and D. B. Ingram, Nat. Mater. 10, 911 (2011).
    [CrossRef]
  7. D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
    [CrossRef]
  8. J. Li, J. B. Xu, and H. C. Ong, Appl. Phys. Lett. 94, 241114 (2009).
  9. L. Zhang, C. Y. Chan, J. Li, and H. C. Ong, Opt. Express 20, 12610 (2012).
    [CrossRef]
  10. S. Nie and S. R. Emory, Science 275, 1102 (1997).
    [CrossRef]
  11. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
    [CrossRef]
  12. H. Paudel, K. Bayat, M. Baroughi, S. May, and D. Galipeau, Opt. Express 17, 22179 (2009).
    [CrossRef]
  13. T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
    [CrossRef]
  14. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, Adv. Mater. 14, 1393 (2002).
    [CrossRef]
  15. C. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, Appl. Phys. Lett. 96, 033104 (2010).
    [CrossRef]
  16. H. Gao, W. Zhou, and T. W. Odom, Adv. Funct. Mater. 20, 529 (2010).
    [CrossRef]
  17. D. Y. Lei, J. Li, A. I. Fernandez-Dominguez, H. C. Ong, and S. A. Maier, ACS Nano 4, 432 (2010).
    [CrossRef]
  18. S. Wu, Z. Wang, and S. H. Fan, IEEE, J. Quantum Elect. 40, 1511 (2004).
  19. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  20. H. Y. Lo, C. Y. Chan, and H. C. Ong, Appl. Phys. Lett. 101, 223108 (2012).
    [CrossRef]
  21. T. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. Schuck, S. Cabrini, A. Schwartzberg, J. Bokor, E. Yablonovitch, and M. Wu, Nano Lett. 11, 2606 (2011).
  22. G. Sun and J. B. Khurgin, Appl. Phys. Lett. 97, 263110 (2010).
    [CrossRef]
  23. H. Raether, Surface Plasmons (Springer, 1988).
  24. C. Genet, M. P. Exter, and J. P. Woerdman, Opt. Commun. 225, 331 (2003).
    [CrossRef]
  25. M. Sarrazin, J. P. Vigeron, and J. M. Vigoureux, Phys. Rev. B 67, 085415 (2003).
  26. Z. L. Cao, H. Y. Lo, and H. C. Ong, Opt. Lett. 37, 5166 (2012).
    [CrossRef]
  27. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
    [CrossRef]
  28. K. C. Hui, J. T. K. Wan, J. B. Xu, and H. C. Ong, Appl. Phys. Lett. 95, 063110 (2009).
    [CrossRef]

2012 (3)

2011 (3)

T. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. Schuck, S. Cabrini, A. Schwartzberg, J. Bokor, E. Yablonovitch, and M. Wu, Nano Lett. 11, 2606 (2011).

M. L. Juan, M. Righini, and R. Quidant, Nat. Photonics 5, 349 (2011).
[CrossRef]

A. Linic, P. Christopher, and D. B. Ingram, Nat. Mater. 10, 911 (2011).
[CrossRef]

2010 (5)

H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
[CrossRef]

C. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, Appl. Phys. Lett. 96, 033104 (2010).
[CrossRef]

H. Gao, W. Zhou, and T. W. Odom, Adv. Funct. Mater. 20, 529 (2010).
[CrossRef]

D. Y. Lei, J. Li, A. I. Fernandez-Dominguez, H. C. Ong, and S. A. Maier, ACS Nano 4, 432 (2010).
[CrossRef]

G. Sun and J. B. Khurgin, Appl. Phys. Lett. 97, 263110 (2010).
[CrossRef]

2009 (3)

K. C. Hui, J. T. K. Wan, J. B. Xu, and H. C. Ong, Appl. Phys. Lett. 95, 063110 (2009).
[CrossRef]

H. Paudel, K. Bayat, M. Baroughi, S. May, and D. Galipeau, Opt. Express 17, 22179 (2009).
[CrossRef]

J. Li, J. B. Xu, and H. C. Ong, Appl. Phys. Lett. 94, 241114 (2009).

2008 (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[CrossRef]

2005 (2)

D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

2004 (2)

S. Wu, Z. Wang, and S. H. Fan, IEEE, J. Quantum Elect. 40, 1511 (2004).

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
[CrossRef]

2003 (2)

C. Genet, M. P. Exter, and J. P. Woerdman, Opt. Commun. 225, 331 (2003).
[CrossRef]

M. Sarrazin, J. P. Vigeron, and J. M. Vigoureux, Phys. Rev. B 67, 085415 (2003).

2002 (1)

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, Adv. Mater. 14, 1393 (2002).
[CrossRef]

1999 (1)

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

1997 (1)

S. Nie and S. R. Emory, Science 275, 1102 (1997).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
[CrossRef]

Barnes, W. L.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, Adv. Mater. 14, 1393 (2002).
[CrossRef]

Baroughi, M.

Bayat, K.

Bokor, J.

T. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. Schuck, S. Cabrini, A. Schwartzberg, J. Bokor, E. Yablonovitch, and M. Wu, Nano Lett. 11, 2606 (2011).

Cabrini, S.

T. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. Schuck, S. Cabrini, A. Schwartzberg, J. Bokor, E. Yablonovitch, and M. Wu, Nano Lett. 11, 2606 (2011).

Cao, Z. L.

Chan, C. Y.

H. Y. Lo, C. Y. Chan, and H. C. Ong, Appl. Phys. Lett. 101, 223108 (2012).
[CrossRef]

L. Zhang, C. Y. Chan, J. Li, and H. C. Ong, Opt. Express 20, 12610 (2012).
[CrossRef]

C. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, Appl. Phys. Lett. 96, 033104 (2010).
[CrossRef]

Choo, H.

T. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. Schuck, S. Cabrini, A. Schwartzberg, J. Bokor, E. Yablonovitch, and M. Wu, Nano Lett. 11, 2606 (2011).

Christopher, P.

A. Linic, P. Christopher, and D. B. Ingram, Nat. Mater. 10, 911 (2011).
[CrossRef]

Dhuey, S.

T. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. Schuck, S. Cabrini, A. Schwartzberg, J. Bokor, E. Yablonovitch, and M. Wu, Nano Lett. 11, 2606 (2011).

Ebbesen, T. W.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, Science 275, 1102 (1997).
[CrossRef]

Exter, M. P.

C. Genet, M. P. Exter, and J. P. Woerdman, Opt. Commun. 225, 331 (2003).
[CrossRef]

Fan, S. H.

S. Wu, Z. Wang, and S. H. Fan, IEEE, J. Quantum Elect. 40, 1511 (2004).

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Fernandez-Dominguez, A. I.

D. Y. Lei, J. Li, A. I. Fernandez-Dominguez, H. C. Ong, and S. A. Maier, ACS Nano 4, 432 (2010).
[CrossRef]

Galipeau, D.

Gao, H.

H. Gao, W. Zhou, and T. W. Odom, Adv. Funct. Mater. 20, 529 (2010).
[CrossRef]

García-Vidal, F. J.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Genet, C.

C. Genet, M. P. Exter, and J. P. Woerdman, Opt. Commun. 225, 331 (2003).
[CrossRef]

Ghaemi, H.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[CrossRef]

Haus, H. A.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Hobson, P. A.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, Adv. Mater. 14, 1393 (2002).
[CrossRef]

Hui, K. C.

K. C. Hui, J. T. K. Wan, J. B. Xu, and H. C. Ong, Appl. Phys. Lett. 95, 063110 (2009).
[CrossRef]

Ingram, D. B.

A. Linic, P. Christopher, and D. B. Ingram, Nat. Mater. 10, 911 (2011).
[CrossRef]

Jamshidi, A.

T. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. Schuck, S. Cabrini, A. Schwartzberg, J. Bokor, E. Yablonovitch, and M. Wu, Nano Lett. 11, 2606 (2011).

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, Nat. Photonics 5, 349 (2011).
[CrossRef]

Khurgin, J. B.

G. Sun and J. B. Khurgin, Appl. Phys. Lett. 97, 263110 (2010).
[CrossRef]

Kim, M.

T. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. Schuck, S. Cabrini, A. Schwartzberg, J. Bokor, E. Yablonovitch, and M. Wu, Nano Lett. 11, 2606 (2011).

Lakhani, A.

T. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. Schuck, S. Cabrini, A. Schwartzberg, J. Bokor, E. Yablonovitch, and M. Wu, Nano Lett. 11, 2606 (2011).

Lei, D. Y.

D. Y. Lei, J. Li, A. I. Fernandez-Dominguez, H. C. Ong, and S. A. Maier, ACS Nano 4, 432 (2010).
[CrossRef]

Lezec, H.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Li, J.

L. Zhang, C. Y. Chan, J. Li, and H. C. Ong, Opt. Express 20, 12610 (2012).
[CrossRef]

D. Y. Lei, J. Li, A. I. Fernandez-Dominguez, H. C. Ong, and S. A. Maier, ACS Nano 4, 432 (2010).
[CrossRef]

J. Li, J. B. Xu, and H. C. Ong, Appl. Phys. Lett. 94, 241114 (2009).

Linic, A.

A. Linic, P. Christopher, and D. B. Ingram, Nat. Mater. 10, 911 (2011).
[CrossRef]

Lo, H. Y.

H. Y. Lo, C. Y. Chan, and H. C. Ong, Appl. Phys. Lett. 101, 223108 (2012).
[CrossRef]

Z. L. Cao, H. Y. Lo, and H. C. Ong, Opt. Lett. 37, 5166 (2012).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[CrossRef]

Maier, S. A.

D. Y. Lei, J. Li, A. I. Fernandez-Dominguez, H. C. Ong, and S. A. Maier, ACS Nano 4, 432 (2010).
[CrossRef]

S. A. Maier, Plasmonics: Fundamentals and Application, (Springer, 2007).

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

May, S.

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
[CrossRef]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, Science 275, 1102 (1997).
[CrossRef]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
[CrossRef]

Odom, T. W.

H. Gao, W. Zhou, and T. W. Odom, Adv. Funct. Mater. 20, 529 (2010).
[CrossRef]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
[CrossRef]

Ong, H. C.

L. Zhang, C. Y. Chan, J. Li, and H. C. Ong, Opt. Express 20, 12610 (2012).
[CrossRef]

H. Y. Lo, C. Y. Chan, and H. C. Ong, Appl. Phys. Lett. 101, 223108 (2012).
[CrossRef]

Z. L. Cao, H. Y. Lo, and H. C. Ong, Opt. Lett. 37, 5166 (2012).
[CrossRef]

D. Y. Lei, J. Li, A. I. Fernandez-Dominguez, H. C. Ong, and S. A. Maier, ACS Nano 4, 432 (2010).
[CrossRef]

C. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, Appl. Phys. Lett. 96, 033104 (2010).
[CrossRef]

J. Li, J. B. Xu, and H. C. Ong, Appl. Phys. Lett. 94, 241114 (2009).

K. C. Hui, J. T. K. Wan, J. B. Xu, and H. C. Ong, Appl. Phys. Lett. 95, 063110 (2009).
[CrossRef]

Paudel, H.

Pendry, J. B.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, Nat. Photonics 5, 349 (2011).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons (Springer, 1988).

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, Nat. Photonics 5, 349 (2011).
[CrossRef]

Sage, I.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, Adv. Mater. 14, 1393 (2002).
[CrossRef]

Sarrazin, M.

M. Sarrazin, J. P. Vigeron, and J. M. Vigoureux, Phys. Rev. B 67, 085415 (2003).

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
[CrossRef]

Schuck, P.

T. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. Schuck, S. Cabrini, A. Schwartzberg, J. Bokor, E. Yablonovitch, and M. Wu, Nano Lett. 11, 2606 (2011).

Schwartzberg, A.

T. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. Schuck, S. Cabrini, A. Schwartzberg, J. Bokor, E. Yablonovitch, and M. Wu, Nano Lett. 11, 2606 (2011).

Seok, T.

T. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. Schuck, S. Cabrini, A. Schwartzberg, J. Bokor, E. Yablonovitch, and M. Wu, Nano Lett. 11, 2606 (2011).

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[CrossRef]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

Sun, G.

G. Sun and J. B. Khurgin, Appl. Phys. Lett. 97, 263110 (2010).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[CrossRef]

Vigeron, J. P.

M. Sarrazin, J. P. Vigeron, and J. M. Vigoureux, Phys. Rev. B 67, 085415 (2003).

Vigoureux, J. M.

M. Sarrazin, J. P. Vigeron, and J. M. Vigoureux, Phys. Rev. B 67, 085415 (2003).

Wan, J. T. K.

K. C. Hui, J. T. K. Wan, J. B. Xu, and H. C. Ong, Appl. Phys. Lett. 95, 063110 (2009).
[CrossRef]

Wang, Z.

S. Wu, Z. Wang, and S. H. Fan, IEEE, J. Quantum Elect. 40, 1511 (2004).

Wasey, J. A. E.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, Adv. Mater. 14, 1393 (2002).
[CrossRef]

Waye, M. Y.

C. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, Appl. Phys. Lett. 96, 033104 (2010).
[CrossRef]

Wedge, S.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, Adv. Mater. 14, 1393 (2002).
[CrossRef]

Woerdman, J. P.

C. Genet, M. P. Exter, and J. P. Woerdman, Opt. Commun. 225, 331 (2003).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Wu, M.

T. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. Schuck, S. Cabrini, A. Schwartzberg, J. Bokor, E. Yablonovitch, and M. Wu, Nano Lett. 11, 2606 (2011).

Wu, S.

S. Wu, Z. Wang, and S. H. Fan, IEEE, J. Quantum Elect. 40, 1511 (2004).

Xu, J. B.

C. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, Appl. Phys. Lett. 96, 033104 (2010).
[CrossRef]

J. Li, J. B. Xu, and H. C. Ong, Appl. Phys. Lett. 94, 241114 (2009).

K. C. Hui, J. T. K. Wan, J. B. Xu, and H. C. Ong, Appl. Phys. Lett. 95, 063110 (2009).
[CrossRef]

Yablonovitch, E.

T. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. Schuck, S. Cabrini, A. Schwartzberg, J. Bokor, E. Yablonovitch, and M. Wu, Nano Lett. 11, 2606 (2011).

Yu, E. T.

D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

Zhang, L.

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[CrossRef]

Zhou, W.

H. Gao, W. Zhou, and T. W. Odom, Adv. Funct. Mater. 20, 529 (2010).
[CrossRef]

ACS Nano (1)

D. Y. Lei, J. Li, A. I. Fernandez-Dominguez, H. C. Ong, and S. A. Maier, ACS Nano 4, 432 (2010).
[CrossRef]

Adv. Funct. Mater. (1)

H. Gao, W. Zhou, and T. W. Odom, Adv. Funct. Mater. 20, 529 (2010).
[CrossRef]

Adv. Mater. (1)

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, Adv. Mater. 14, 1393 (2002).
[CrossRef]

Appl. Phys. Lett. (5)

C. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, Appl. Phys. Lett. 96, 033104 (2010).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

H. Y. Lo, C. Y. Chan, and H. C. Ong, Appl. Phys. Lett. 101, 223108 (2012).
[CrossRef]

G. Sun and J. B. Khurgin, Appl. Phys. Lett. 97, 263110 (2010).
[CrossRef]

K. C. Hui, J. T. K. Wan, J. B. Xu, and H. C. Ong, Appl. Phys. Lett. 95, 063110 (2009).
[CrossRef]

IEEE, J. Quantum Elect. (1)

S. Wu, Z. Wang, and S. H. Fan, IEEE, J. Quantum Elect. 40, 1511 (2004).

Nano Lett. (1)

T. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. Schuck, S. Cabrini, A. Schwartzberg, J. Bokor, E. Yablonovitch, and M. Wu, Nano Lett. 11, 2606 (2011).

Nat. Mater. (4)

A. Linic, P. Christopher, and D. B. Ingram, Nat. Mater. 10, 911 (2011).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
[CrossRef]

H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[CrossRef]

Nat. Photonics (1)

M. L. Juan, M. Righini, and R. Quidant, Nat. Photonics 5, 349 (2011).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Opt. Commun. (1)

C. Genet, M. P. Exter, and J. P. Woerdman, Opt. Commun. 225, 331 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Lett. (1)

J. Li, J. B. Xu, and H. C. Ong, Appl. Phys. Lett. 94, 241114 (2009).

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

Phys. Rev. B (1)

M. Sarrazin, J. P. Vigeron, and J. M. Vigoureux, Phys. Rev. B 67, 085415 (2003).

Phys. Rev. Lett. (1)

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Science (1)

S. Nie and S. R. Emory, Science 275, 1102 (1997).
[CrossRef]

Other (3)

S. A. Maier, Plasmonics: Fundamentals and Application, (Springer, 2007).

H. Raether, Surface Plasmons (Springer, 1988).

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

One-dimensional (a) Ag array with period=670nm, height=40nm, and different groove widths. Two-dimensional (b) Ag and (c) Au arrays with different radii. The Ag arrays have period=670nm and height=60nm whereas the Au arrays have period=670nm and height=150nm. Each figure has three parts. The top is the absorption and radiative decay rates of 1 or (1,0) SPPs taken at resonant wavelength 790, 900, and 910 nm in Γ-X direction as a function of groove width or radius. The analytical flat metal absorption rates are shown as dashed lines. The middle and the bottom are their corresponding average electric field strength and orthogonal reflectivity spectra. A dashed line at reflectivity=0.25 is shown.

Fig. 2.
Fig. 2.

(a) Angle- and wavelength-resolved orthogonal reflectivity mapping taken in Γ-X direction. The SEM image of the array is in the inset, showing the holes are arranged in cubic structure with period and radius=670 and 102 nm. The dashed line is deduced from phase-matching equation showing (1,0) SPP mode is excited. (b) The corresponding reflectivity spectra (symbols) are extracted at different incident angles. The solid lines are the best fits by using CMT. (c) The deduced absorption and radiative decay rates as a function of resonant wavelength. The analytical flat Ag absorption rate is shown as the dashed line.

Fig. 3.
Fig. 3.

Absorption and radiative decay rates of (a) Ag and (b) Au nanohole arrays as a function of radius for λres=900nm. The analytical flat metal absorption rates are shown as dashed lines. The corresponding orthogonal reflectivity spectra of (c) Ag and (d) Au arrays (symbols). The peak height reaches 0.25 when Γrad=Γabs. The spectra are shifted horizontally for visualization. The solid lines are the best fits by using CMT.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R=Eo[rp+Γradeiϕi(ωωSPP)+Γtot/2rs]

Metrics