Abstract

We report the first, to the best of our knowledge, erbium-doped zirconium-fluoride-based glass fiber laser operating well beyond 3 μm with significant power. This fiber laser achieved 260 mW in CW at room temperature. The use of two different wavelength pump sources allows us to take advantage of the long-lived excited states that would normally cause a bottleneck, and this enables maximum incident optical-to-optical efficiency of 16% with respect to the total incident pump power. Both output power and efficiency are an order of magnitude improvement over similar lasers demonstrated previously. The fiber laser operating at 3.604 μm also exhibited the longest wavelength of operation obtained to date for a room temperature, nonsupercontinuum fiber laser.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Molocher, Proc. SPIE 5989, 598902 (2005).
  2. L. Jun, T. Qiulin, Z. Wendong, X. Chenyang, G. Tao, and X. Jijun, J. Int. Meas. Confed. 44, 823 (2011).
  3. L. W. Kornaszewski, N. Gayraud, W. N. MacPherson, D. P. Hand, D. T. Reid, J. M. Stone, A. K. George, and J. C. Knight, “Mid-infrared methane sensing using an optical parametric oscillator and a photonic bandgap fiber as a gas cell,” in CLEO Lasers and Electro-Optics (OSA, 2007), pp. 1–2.
  4. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, Opt. Lasers Eng. 37, 101 (2002).
    [CrossRef]
  5. J. Kottmann, U. Grob, J. Rey, and M. Sigrist, Sensors 13, 535 (2013).
    [CrossRef]
  6. D. Guo, X. Chen, S. Vadala, J. Leach, Y. Kostov, W. W. Bewley, C. S. ýKim, M. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. R. Meyer, and F. S. Choa, Proc. SPIE 8207, 491 (2012).
  7. M. Mürtz and P. Hering, “Online monitoring of exhaled breath using mid-infrared laser spectroscopy,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. Sorokina, eds.(Springer, 2008), pp. 535–555.
  8. Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, J. Geophys. Res. Atmos. 113, D21306 (2008).
  9. J. Li, D. D. Hudson, and S. D. Jackson, Opt. Lett. 36, 3642 (2011).
    [CrossRef]
  10. S. D. Jackson, Nat. Photonics 6, 423 (2012).
    [CrossRef]
  11. C. Carbonnier, H. Toebben, and U. B. Unrau, Electron. Lett. 34, 893 (1998).
    [CrossRef]
  12. J. Schneider, Electron. Lett. 31, 1250 (1995).
    [CrossRef]
  13. H. Toebben, Electron. Lett. 28, 1361 (1992).
    [CrossRef]
  14. M. Bernier, V. Fortin, N. Caron, M. El-Amraoui, Y. Messaddeq, and R. Vallée, Opt. Lett. 38, 127 (2013).
    [CrossRef]
  15. E. A. Downing, “Method and system for three-dimensional display of information based on two-photon upconversion,” U.S. PatentUS5914807 (June22, 1999).
  16. M. Pollnau, IEEE J. Quantum Electron. 33, 1982 (1997).
    [CrossRef]
  17. J. R. M. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, Appl. Phys. Lett. 272784 (1998).
  18. M. Gorjan, M. Mariñcek, and M. Čopič, J. Opt. Soc. Am. B 27, 2784 (2010).
    [CrossRef]

2013 (2)

2012 (2)

D. Guo, X. Chen, S. Vadala, J. Leach, Y. Kostov, W. W. Bewley, C. S. ýKim, M. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. R. Meyer, and F. S. Choa, Proc. SPIE 8207, 491 (2012).

S. D. Jackson, Nat. Photonics 6, 423 (2012).
[CrossRef]

2011 (2)

L. Jun, T. Qiulin, Z. Wendong, X. Chenyang, G. Tao, and X. Jijun, J. Int. Meas. Confed. 44, 823 (2011).

J. Li, D. D. Hudson, and S. D. Jackson, Opt. Lett. 36, 3642 (2011).
[CrossRef]

2010 (1)

2008 (1)

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, J. Geophys. Res. Atmos. 113, D21306 (2008).

2005 (1)

B. Molocher, Proc. SPIE 5989, 598902 (2005).

2002 (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, Opt. Lasers Eng. 37, 101 (2002).
[CrossRef]

1998 (2)

C. Carbonnier, H. Toebben, and U. B. Unrau, Electron. Lett. 34, 893 (1998).
[CrossRef]

J. R. M. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, Appl. Phys. Lett. 272784 (1998).

1997 (1)

M. Pollnau, IEEE J. Quantum Electron. 33, 1982 (1997).
[CrossRef]

1995 (1)

J. Schneider, Electron. Lett. 31, 1250 (1995).
[CrossRef]

1992 (1)

H. Toebben, Electron. Lett. 28, 1361 (1992).
[CrossRef]

Bernier, M.

Bewley, W. W.

D. Guo, X. Chen, S. Vadala, J. Leach, Y. Kostov, W. W. Bewley, C. S. ýKim, M. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. R. Meyer, and F. S. Choa, Proc. SPIE 8207, 491 (2012).

Blake, D. R.

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, J. Geophys. Res. Atmos. 113, D21306 (2008).

Canedy, C. L.

D. Guo, X. Chen, S. Vadala, J. Leach, Y. Kostov, W. W. Bewley, C. S. ýKim, M. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. R. Meyer, and F. S. Choa, Proc. SPIE 8207, 491 (2012).

Capasso, F.

J. R. M. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, Appl. Phys. Lett. 272784 (1998).

Carbonnier, C.

C. Carbonnier, H. Toebben, and U. B. Unrau, Electron. Lett. 34, 893 (1998).
[CrossRef]

Caron, N.

Chen, X.

D. Guo, X. Chen, S. Vadala, J. Leach, Y. Kostov, W. W. Bewley, C. S. ýKim, M. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. R. Meyer, and F. S. Choa, Proc. SPIE 8207, 491 (2012).

Chenyang, X.

L. Jun, T. Qiulin, Z. Wendong, X. Chenyang, G. Tao, and X. Jijun, J. Int. Meas. Confed. 44, 823 (2011).

Cho, A. Y.

J. R. M. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, Appl. Phys. Lett. 272784 (1998).

Choa, F. S.

D. Guo, X. Chen, S. Vadala, J. Leach, Y. Kostov, W. W. Bewley, C. S. ýKim, M. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. R. Meyer, and F. S. Choa, Proc. SPIE 8207, 491 (2012).

Chu, S.-N. G.

J. R. M. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, Appl. Phys. Lett. 272784 (1998).

Copic, M.

Downing, E. A.

E. A. Downing, “Method and system for three-dimensional display of information based on two-photon upconversion,” U.S. PatentUS5914807 (June22, 1999).

El-Amraoui, M.

Faist, J. R. M.

J. R. M. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, Appl. Phys. Lett. 272784 (1998).

Fortin, V.

Gayraud, N.

L. W. Kornaszewski, N. Gayraud, W. N. MacPherson, D. P. Hand, D. T. Reid, J. M. Stone, A. K. George, and J. C. Knight, “Mid-infrared methane sensing using an optical parametric oscillator and a photonic bandgap fiber as a gas cell,” in CLEO Lasers and Electro-Optics (OSA, 2007), pp. 1–2.

George, A. K.

L. W. Kornaszewski, N. Gayraud, W. N. MacPherson, D. P. Hand, D. T. Reid, J. M. Stone, A. K. George, and J. C. Knight, “Mid-infrared methane sensing using an optical parametric oscillator and a photonic bandgap fiber as a gas cell,” in CLEO Lasers and Electro-Optics (OSA, 2007), pp. 1–2.

Gorjan, M.

Grob, U.

J. Kottmann, U. Grob, J. Rey, and M. Sigrist, Sensors 13, 535 (2013).
[CrossRef]

Guo, D.

D. Guo, X. Chen, S. Vadala, J. Leach, Y. Kostov, W. W. Bewley, C. S. ýKim, M. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. R. Meyer, and F. S. Choa, Proc. SPIE 8207, 491 (2012).

Hand, D. P.

L. W. Kornaszewski, N. Gayraud, W. N. MacPherson, D. P. Hand, D. T. Reid, J. M. Stone, A. K. George, and J. C. Knight, “Mid-infrared methane sensing using an optical parametric oscillator and a photonic bandgap fiber as a gas cell,” in CLEO Lasers and Electro-Optics (OSA, 2007), pp. 1–2.

Hering, P.

M. Mürtz and P. Hering, “Online monitoring of exhaled breath using mid-infrared laser spectroscopy,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. Sorokina, eds.(Springer, 2008), pp. 535–555.

Hudman, R. C.

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, J. Geophys. Res. Atmos. 113, D21306 (2008).

Hudson, D. D.

Hutchinson, A. L.

J. R. M. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, Appl. Phys. Lett. 272784 (1998).

Jackson, S. D.

Jacob, D. J.

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, J. Geophys. Res. Atmos. 113, D21306 (2008).

Jänker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, Opt. Lasers Eng. 37, 101 (2002).
[CrossRef]

Jijun, X.

L. Jun, T. Qiulin, Z. Wendong, X. Chenyang, G. Tao, and X. Jijun, J. Int. Meas. Confed. 44, 823 (2011).

Jun, L.

L. Jun, T. Qiulin, Z. Wendong, X. Chenyang, G. Tao, and X. Jijun, J. Int. Meas. Confed. 44, 823 (2011).

Kim, M.

D. Guo, X. Chen, S. Vadala, J. Leach, Y. Kostov, W. W. Bewley, C. S. ýKim, M. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. R. Meyer, and F. S. Choa, Proc. SPIE 8207, 491 (2012).

Knight, J. C.

L. W. Kornaszewski, N. Gayraud, W. N. MacPherson, D. P. Hand, D. T. Reid, J. M. Stone, A. K. George, and J. C. Knight, “Mid-infrared methane sensing using an optical parametric oscillator and a photonic bandgap fiber as a gas cell,” in CLEO Lasers and Electro-Optics (OSA, 2007), pp. 1–2.

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, Opt. Lasers Eng. 37, 101 (2002).
[CrossRef]

Kornaszewski, L. W.

L. W. Kornaszewski, N. Gayraud, W. N. MacPherson, D. P. Hand, D. T. Reid, J. M. Stone, A. K. George, and J. C. Knight, “Mid-infrared methane sensing using an optical parametric oscillator and a photonic bandgap fiber as a gas cell,” in CLEO Lasers and Electro-Optics (OSA, 2007), pp. 1–2.

Kostov, Y.

D. Guo, X. Chen, S. Vadala, J. Leach, Y. Kostov, W. W. Bewley, C. S. ýKim, M. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. R. Meyer, and F. S. Choa, Proc. SPIE 8207, 491 (2012).

Kottmann, J.

J. Kottmann, U. Grob, J. Rey, and M. Sigrist, Sensors 13, 535 (2013).
[CrossRef]

Leach, J.

D. Guo, X. Chen, S. Vadala, J. Leach, Y. Kostov, W. W. Bewley, C. S. ýKim, M. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. R. Meyer, and F. S. Choa, Proc. SPIE 8207, 491 (2012).

Li, J.

Logan, J. A.

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, J. Geophys. Res. Atmos. 113, D21306 (2008).

MacPherson, W. N.

L. W. Kornaszewski, N. Gayraud, W. N. MacPherson, D. P. Hand, D. T. Reid, J. M. Stone, A. K. George, and J. C. Knight, “Mid-infrared methane sensing using an optical parametric oscillator and a photonic bandgap fiber as a gas cell,” in CLEO Lasers and Electro-Optics (OSA, 2007), pp. 1–2.

Mariñcek, M.

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, Opt. Lasers Eng. 37, 101 (2002).
[CrossRef]

Merritt, C. D.

D. Guo, X. Chen, S. Vadala, J. Leach, Y. Kostov, W. W. Bewley, C. S. ýKim, M. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. R. Meyer, and F. S. Choa, Proc. SPIE 8207, 491 (2012).

Messaddeq, Y.

Meyer, J. R.

D. Guo, X. Chen, S. Vadala, J. Leach, Y. Kostov, W. W. Bewley, C. S. ýKim, M. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. R. Meyer, and F. S. Choa, Proc. SPIE 8207, 491 (2012).

Molocher, B.

B. Molocher, Proc. SPIE 5989, 598902 (2005).

Mücke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, Opt. Lasers Eng. 37, 101 (2002).
[CrossRef]

Mürtz, M.

M. Mürtz and P. Hering, “Online monitoring of exhaled breath using mid-infrared laser spectroscopy,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. Sorokina, eds.(Springer, 2008), pp. 535–555.

Pollnau, M.

M. Pollnau, IEEE J. Quantum Electron. 33, 1982 (1997).
[CrossRef]

Qiulin, T.

L. Jun, T. Qiulin, Z. Wendong, X. Chenyang, G. Tao, and X. Jijun, J. Int. Meas. Confed. 44, 823 (2011).

Reid, D. T.

L. W. Kornaszewski, N. Gayraud, W. N. MacPherson, D. P. Hand, D. T. Reid, J. M. Stone, A. K. George, and J. C. Knight, “Mid-infrared methane sensing using an optical parametric oscillator and a photonic bandgap fiber as a gas cell,” in CLEO Lasers and Electro-Optics (OSA, 2007), pp. 1–2.

Rey, J.

J. Kottmann, U. Grob, J. Rey, and M. Sigrist, Sensors 13, 535 (2013).
[CrossRef]

Schneider, J.

J. Schneider, Electron. Lett. 31, 1250 (1995).
[CrossRef]

Sigrist, M.

J. Kottmann, U. Grob, J. Rey, and M. Sigrist, Sensors 13, 535 (2013).
[CrossRef]

Sivco, D. L.

J. R. M. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, Appl. Phys. Lett. 272784 (1998).

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, Opt. Lasers Eng. 37, 101 (2002).
[CrossRef]

Stone, J. M.

L. W. Kornaszewski, N. Gayraud, W. N. MacPherson, D. P. Hand, D. T. Reid, J. M. Stone, A. K. George, and J. C. Knight, “Mid-infrared methane sensing using an optical parametric oscillator and a photonic bandgap fiber as a gas cell,” in CLEO Lasers and Electro-Optics (OSA, 2007), pp. 1–2.

Tao, G.

L. Jun, T. Qiulin, Z. Wendong, X. Chenyang, G. Tao, and X. Jijun, J. Int. Meas. Confed. 44, 823 (2011).

Toebben, H.

C. Carbonnier, H. Toebben, and U. B. Unrau, Electron. Lett. 34, 893 (1998).
[CrossRef]

H. Toebben, Electron. Lett. 28, 1361 (1992).
[CrossRef]

Unrau, U. B.

C. Carbonnier, H. Toebben, and U. B. Unrau, Electron. Lett. 34, 893 (1998).
[CrossRef]

Vadala, S.

D. Guo, X. Chen, S. Vadala, J. Leach, Y. Kostov, W. W. Bewley, C. S. ýKim, M. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. R. Meyer, and F. S. Choa, Proc. SPIE 8207, 491 (2012).

Vallée, R.

Vurgaftman, I.

D. Guo, X. Chen, S. Vadala, J. Leach, Y. Kostov, W. W. Bewley, C. S. ýKim, M. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. R. Meyer, and F. S. Choa, Proc. SPIE 8207, 491 (2012).

Wendong, Z.

L. Jun, T. Qiulin, Z. Wendong, X. Chenyang, G. Tao, and X. Jijun, J. Int. Meas. Confed. 44, 823 (2011).

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, Opt. Lasers Eng. 37, 101 (2002).
[CrossRef]

Xiao, Y.

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, J. Geophys. Res. Atmos. 113, D21306 (2008).

Yantosca, R.

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, J. Geophys. Res. Atmos. 113, D21306 (2008).

ýKim, C. S.

D. Guo, X. Chen, S. Vadala, J. Leach, Y. Kostov, W. W. Bewley, C. S. ýKim, M. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. R. Meyer, and F. S. Choa, Proc. SPIE 8207, 491 (2012).

Appl. Phys. Lett. (1)

J. R. M. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, Appl. Phys. Lett. 272784 (1998).

Electron. Lett. (3)

C. Carbonnier, H. Toebben, and U. B. Unrau, Electron. Lett. 34, 893 (1998).
[CrossRef]

J. Schneider, Electron. Lett. 31, 1250 (1995).
[CrossRef]

H. Toebben, Electron. Lett. 28, 1361 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Pollnau, IEEE J. Quantum Electron. 33, 1982 (1997).
[CrossRef]

J. Geophys. Res. Atmos. (1)

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, J. Geophys. Res. Atmos. 113, D21306 (2008).

J. Int. Meas. Confed. (1)

L. Jun, T. Qiulin, Z. Wendong, X. Chenyang, G. Tao, and X. Jijun, J. Int. Meas. Confed. 44, 823 (2011).

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

S. D. Jackson, Nat. Photonics 6, 423 (2012).
[CrossRef]

Opt. Lasers Eng. (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, Opt. Lasers Eng. 37, 101 (2002).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (2)

D. Guo, X. Chen, S. Vadala, J. Leach, Y. Kostov, W. W. Bewley, C. S. ýKim, M. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. R. Meyer, and F. S. Choa, Proc. SPIE 8207, 491 (2012).

B. Molocher, Proc. SPIE 5989, 598902 (2005).

Sensors (1)

J. Kottmann, U. Grob, J. Rey, and M. Sigrist, Sensors 13, 535 (2013).
[CrossRef]

Other (3)

L. W. Kornaszewski, N. Gayraud, W. N. MacPherson, D. P. Hand, D. T. Reid, J. M. Stone, A. K. George, and J. C. Knight, “Mid-infrared methane sensing using an optical parametric oscillator and a photonic bandgap fiber as a gas cell,” in CLEO Lasers and Electro-Optics (OSA, 2007), pp. 1–2.

M. Mürtz and P. Hering, “Online monitoring of exhaled breath using mid-infrared laser spectroscopy,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. Sorokina, eds.(Springer, 2008), pp. 535–555.

E. A. Downing, “Method and system for three-dimensional display of information based on two-photon upconversion,” U.S. PatentUS5914807 (June22, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Energy level diagram of erbium-doped ZBLAN showing the pumping scheme for a typical mid-infrared lasing transition that is pumped using convential technique and the DWP concept. Energy level lifetimes on the right are from [17]. P, P1 and P2, pumps; L, lasing transition; MP, multiphonon decay.

Fig. 2.
Fig. 2.

Schematic of the DWP laser. AR, antireflective coating; HR, high reflectivity coating.

Fig. 3.
Fig. 3.

3.5 μm laser output power. Incident (bottom scale) and absorbed (top scale) 1973 nm power.

Fig. 4.
Fig. 4.

Change in the laser output power as a function of P1 power. Incident P2 power is fixed for each curve.

Fig. 5.
Fig. 5.

Fluorescence and laser emissions spectra.

Metrics