Abstract

This Letter investigates exciton photoluminescence (PL) in resonant quasi-periodic Thue–Morse quantum wells (QWs). The results show that the PL properties of quasi-periodic Thue–Morse QWs are quite different from those of resonant Fibonacci QWs. The maximum and minimum PL intensities occur under the anti-Bragg and Bragg conditions, respectively. The maxima of the PL intensity gradually decline when the filling factor increases from 0.25 to 0.5. Accordingly, the squared electric field at the QWs decreases as the Thue–Morse QW deviates from the anti-Bragg condition.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription