Abstract

We investigate the onset of nonlinear effects in hybrid polymer-chalcogenide optical microwires and show that they provide an enhanced Kerr nonlinearity while simultaneously mitigating stimulated Brillouin scattering as compared to both chalcogenide and silica optical fibers. It is shown in particular that the polymer cladding surrounding the microwire significantly broadens the Brillouin linewidth and increases the threshold, thus enabling Kerr nonlinear applications. We also study the influence of the wire diameter on the Brillouin dynamics and demonstrate that the Brillouin frequency shift can be finely tuned over a wide radio-frequency range.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nat. Photonics 5, 141 (2011).
  2. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, J. Opt. Soc. Am. B 21, 1146 (2004).
    [CrossRef]
  3. Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, and B. Luther-Davies, Opt. Mater. Express 3, 1075 (2013).
    [CrossRef]
  4. I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P.-Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, Opt. Express 20, 27083 (2012).
    [CrossRef]
  5. K. Ogusu, H. Li, and M. Kitao, J. Opt. Soc. Am. B 21, 1302 (2004).
    [CrossRef]
  6. K. S. Abedin, Opt. Express 13, 10266 (2005).
    [CrossRef]
  7. R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thévenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, Opt. Express 19, 8285 (2011).
    [CrossRef]
  8. A. Kobyakov, M. Sauer, and D. Chowdhury, Adv. Opt. Photon. 2, 1 (2010).
    [CrossRef]
  9. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2008).
  10. C. Baker and M. Rochette, Opt. Express 18, 12391 (2010).
    [CrossRef]
  11. C. Baker and M. Rochette, IEEE Photon. J. 4, 960 (2012).
    [CrossRef]
  12. R. Ahmad and M. Rochette, Opt. Express 20, 9572 (2012).
    [CrossRef]
  13. J.-C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. Foaleng Mafang, and L. Thévenaz, Opt. Express 15, 15517 (2007).
    [CrossRef]
  14. J.-C. Beugnot and V. Laude, Phys. Rev. B 86, 224304 (2012).
    [CrossRef]
  15. V. Laude and J.-C. Beugnot, AIP Adv. 3, 042109 (2013).
    [CrossRef]
  16. P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
    [CrossRef]
  17. B. Stiller, M. Delqué, J.-C. Beugnot, M. W. Lee, G. Mélin, H. Maillotte, V. Laude, and T. Sylvestre, Opt. Express 19, 7689 (2011).
    [CrossRef]
  18. C. Baker and M. Rochette, Opt. Mater. Express 1, 1065 (2011).
    [CrossRef]
  19. Y. Mizuno and K. Nakamura, Appl. Phys. Lett. 97, 021103 (2010).
    [CrossRef]
  20. J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, Opt. Lett. 30, 1698 (2005).
    [CrossRef]

2013 (2)

2012 (4)

2011 (4)

2010 (3)

2007 (1)

2006 (1)

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

2005 (2)

2004 (2)

Abedin, K. S.

Aggarwal, I. D.

Ahmad, R.

Alasia, D.

Baker, C.

Beugnot, J.-C.

Bony, P.-Y.

Choi, D.-Y.

Chowdhury, D.

Dainese, P.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Delqué, M.

Désévédavy, F.

Eggleton, B. J.

Fatome, J.

Foaleng Mafang, S.

Fragnito, H. L.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Gadret, G.

Gai, X.

Gao, W.

Hasegawa, T.

Hile, S.

Hodelin, J.

Joly, N.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Jules, J.-C.

Kawashima, H.

Khelif, A.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Kibler, B.

Kikuchi, K.

Kitao, M.

Knight, J. C.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Kobyakov, A.

Kohoutek, T.

Laude, V.

V. Laude and J.-C. Beugnot, AIP Adv. 3, 042109 (2013).
[CrossRef]

J.-C. Beugnot and V. Laude, Phys. Rev. B 86, 224304 (2012).
[CrossRef]

B. Stiller, M. Delqué, J.-C. Beugnot, M. W. Lee, G. Mélin, H. Maillotte, V. Laude, and T. Sylvestre, Opt. Express 19, 7689 (2011).
[CrossRef]

J.-C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. Foaleng Mafang, and L. Thévenaz, Opt. Express 15, 15517 (2007).
[CrossRef]

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Lee, J. H.

Lee, M. W.

Lenz, G.

Li, E.

Li, H.

Luther-Davies, B.

Ma, P.

Madden, S.

Madden, S. J.

Maillotte, H.

Marhic, M. E.

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2008).

Mcfarlane, H.

Mélin, G.

Mizuno, Y.

Y. Mizuno and K. Nakamura, Appl. Phys. Lett. 97, 021103 (2010).
[CrossRef]

Monteville, A.

Mouawad, O.

Nagashima, T.

Nakamura, K.

Y. Mizuno and K. Nakamura, Appl. Phys. Lett. 97, 021103 (2010).
[CrossRef]

Ogusu, K.

Ohara, S.

Ohishi, Y.

Pant, R.

Poulton, C. G.

Provino, L.

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nat. Photonics 5, 141 (2011).

Rochette, M.

Russell, P. St. J.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Sanghera, J.

Sauer, M.

Savelii, I.

Shaw, L. B.

Slusher, R. E.

Smektala, F.

Stiller, B.

Sugimoto, N.

Suzuki, T.

Sylvestre, T.

Tanemura, T.

Thévenaz, L.

Traynor, N.

Wang, R.

Wang, T.

Wiederhecker, G. S.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Yang, Z.

Yu, Y.

Adv. Opt. Photon. (1)

AIP Adv. (1)

V. Laude and J.-C. Beugnot, AIP Adv. 3, 042109 (2013).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Mizuno and K. Nakamura, Appl. Phys. Lett. 97, 021103 (2010).
[CrossRef]

IEEE Photon. J. (1)

C. Baker and M. Rochette, IEEE Photon. J. 4, 960 (2012).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nat. Photonics 5, 141 (2011).

Nat. Phys. (1)

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Opt. Express (7)

Opt. Lett. (1)

Opt. Mater. Express (2)

Phys. Rev. B (1)

J.-C. Beugnot and V. Laude, Phys. Rev. B 86, 224304 (2012).
[CrossRef]

Other (1)

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of the hybrid As2Se3-PMMA optical microwire butt-coupled to SMF. (b) Experimental setup. FC, Fiber coupler.

Fig. 2.
Fig. 2.

(a) Brillouin spectra measured in three chalcogenide-based optical microwires with an increasing diameter of 0.7 μm (blue line), 0.9 μm (green line) 1 μm (red line), respectively. (b) Brillouin frequency shift versus the effective refractive index (crosses, experiment; solid line, theory).

Fig. 3.
Fig. 3.

Numerical simulations. Color plot of elastic energy of acoustic modes generated by electrostriction versus the acoustic frequency and for a wire core varying from 0.6 to 1 μm from top to bottom. The experimental Brillouin spectra are superimposed for the sake of comparison. The black curve shows the phase-matching condition.

Fig. 4.
Fig. 4.

(a) Experimental Brillouin spectrum measured in 15 μm large-core diameter As2Se3-PMMA optical wire. The dashed red line shows a Lorentzian fit. The Brillouin frequency shift is 8.15 GHz with a 35 MHz linewidth. (b) Brillouin spectrum for the 0.9 μm diameter microwire before (black line) and after (red dashed line) removing the polymer coating by immersing the wire in an acetone bath.

Tables (1)

Tables Icon

Table 1. Comparison of Linear and Nonlinear Parameters of SMFs, As2Se3 Fibers, and Hybrid PMMA-As2Se3 Microwiresa

Metrics