Abstract

In this work we investigate the optical limiting property of polystyrene–zinc-oxide (ZnO) nanotop composite films, using an open aperture Z-scan technique. The nanocomposites are prepared for different loading concentrations of ZnO and are fabricated using spin and dip coating techniques. On exposing the films to a pulsed nanosecond laser at 532 nm, the nonlinear absorption (NLA) coefficient is found to be greater for spin-coated films compared to dip-coated films. The measured NLA coefficient is found to be enhanced with an increase in loading concentration of ZnO in the monomer for both spin- and dip-coated films.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription