Abstract

We present a simple method to accurately measure the effective thermal resistance of a photonic crystal microcavity. The cavity is embedded between two Schottky contacts forming a metal-semiconductor-metal device. The photocarriers circulating in the device provide a local temperature rise that can be dominated by Joule effect under certain conditions. We show that the effective thermal resistance (Rth) can be experimentally deduced from the spectral shift of the cavity resonance wavelength measured at different applied bias. We deduce a value of Rth=1.6×104KW1 for a microcavity on silicon-on-insulator, which is in good agreement with 3D thermal modeling by finite elements.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, Opt. Lett. 30, 2575 (2005).
    [CrossRef]
  2. K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nat. Photonics 6, 248 (2012).
    [CrossRef]
  3. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nat. Photonics 3, 206 (2009).
    [CrossRef]
  4. Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
    [CrossRef]
  5. Z. Han, X. Checoury, D. Neel, S. David, M. El Kurdi, and P. Boucaud, Opt. Commun. 283, 4387 (2010).
    [CrossRef]
  6. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004).
    [CrossRef]
  7. X. Checoury, Z. Han, and P. Boucaud, Phys. Rev. B 82, 041308 (2010).
    [CrossRef]
  8. N. Cazier, X. Checoury, L.-D. Haret, and P. Boucaud, Opt. Express 21, 13626 (2013).
    [CrossRef]
  9. L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, Opt. Express 17, 21108 (2009).
    [CrossRef]
  10. P. E. Barclay, K. Srinivasan, and O. Painter, Opt. Express 13, 801 (2005).
    [CrossRef]
  11. T. Uesugi, B. S. Song, T. Asano, and S. Noda, Opt. Express 14, 377 (2006).
    [CrossRef]
  12. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, Appl. Phys. Lett. 88, 041112 (2006).
    [CrossRef]
  13. L.-D. Haret, X. Checoury, Z. Han, P. Boucaud, S. Combrié, and A. de Rossi, Opt. Express 18, 23965 (2010).
    [CrossRef]
  14. L.-D. Haret, X. Checoury, F. Bayle, N. Cazier, P. Boucaud, S. Combrié, and A. de Rossi, Opt. Express 21, 10324 (2013).
    [CrossRef]
  15. G. Cocorullo, F. G. Della Corte, and I. Rendina, Appl. Phys. Lett. 74, 3338 (1999).
    [CrossRef]
  16. T. Asano, W. Kunishi, M. Nakamura, B. Song, and S. Noda, Electron. Lett. 41, 37 (2005).
    [CrossRef]
  17. M. Tinker and J.-B. Lee, Opt. Express 13, 7174 (2005).
    [CrossRef]
  18. M. Chahal, G. K. Celler, Y. Jaluria, and W. Jiang, Opt. Express 20, 4225 (2012).
    [CrossRef]
  19. W. Song, M. Chahal, G. K. Celler, Y. Jaluria, G. T. Reed, and W. Jiang, Opt. Express 21, 4235 (2013).
    [CrossRef]
  20. R. G. Morris and J. G. Hust, Phys. Rev. 124, 1426 (1961).
    [CrossRef]

2013 (3)

2012 (2)

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nat. Photonics 6, 248 (2012).
[CrossRef]

M. Chahal, G. K. Celler, Y. Jaluria, and W. Jiang, Opt. Express 20, 4225 (2012).
[CrossRef]

2010 (3)

Z. Han, X. Checoury, D. Neel, S. David, M. El Kurdi, and P. Boucaud, Opt. Commun. 283, 4387 (2010).
[CrossRef]

X. Checoury, Z. Han, and P. Boucaud, Phys. Rev. B 82, 041308 (2010).
[CrossRef]

L.-D. Haret, X. Checoury, Z. Han, P. Boucaud, S. Combrié, and A. de Rossi, Opt. Express 18, 23965 (2010).
[CrossRef]

2009 (2)

L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, Opt. Express 17, 21108 (2009).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nat. Photonics 3, 206 (2009).
[CrossRef]

2006 (2)

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

T. Uesugi, B. S. Song, T. Asano, and S. Noda, Opt. Express 14, 377 (2006).
[CrossRef]

2005 (4)

2004 (1)

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004).
[CrossRef]

2003 (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef]

1999 (1)

G. Cocorullo, F. G. Della Corte, and I. Rendina, Appl. Phys. Lett. 74, 3338 (1999).
[CrossRef]

1961 (1)

R. G. Morris and J. G. Hust, Phys. Rev. 124, 1426 (1961).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef]

Asano, T.

T. Uesugi, B. S. Song, T. Asano, and S. Noda, Opt. Express 14, 377 (2006).
[CrossRef]

T. Asano, W. Kunishi, M. Nakamura, B. Song, and S. Noda, Electron. Lett. 41, 37 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef]

Baek, J.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004).
[CrossRef]

Barclay, P. E.

Bayle, F.

Boucaud, P.

Cazier, N.

Celler, G. K.

Chahal, M.

Checoury, X.

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, and I. Rendina, Appl. Phys. Lett. 74, 3338 (1999).
[CrossRef]

Combrié, S.

Corcoran, B.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nat. Photonics 3, 206 (2009).
[CrossRef]

David, S.

Z. Han, X. Checoury, D. Neel, S. David, M. El Kurdi, and P. Boucaud, Opt. Commun. 283, 4387 (2010).
[CrossRef]

de Rossi, A.

Della Corte, F. G.

G. Cocorullo, F. G. Della Corte, and I. Rendina, Appl. Phys. Lett. 74, 3338 (1999).
[CrossRef]

Eggleton, B. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nat. Photonics 3, 206 (2009).
[CrossRef]

El Kurdi, M.

Z. Han, X. Checoury, D. Neel, S. David, M. El Kurdi, and P. Boucaud, Opt. Commun. 283, 4387 (2010).
[CrossRef]

Grillet, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nat. Photonics 3, 206 (2009).
[CrossRef]

Han, Z.

L.-D. Haret, X. Checoury, Z. Han, P. Boucaud, S. Combrié, and A. de Rossi, Opt. Express 18, 23965 (2010).
[CrossRef]

X. Checoury, Z. Han, and P. Boucaud, Phys. Rev. B 82, 041308 (2010).
[CrossRef]

Z. Han, X. Checoury, D. Neel, S. David, M. El Kurdi, and P. Boucaud, Opt. Commun. 283, 4387 (2010).
[CrossRef]

Haret, L.-D.

Hust, J. G.

R. G. Morris and J. G. Hust, Phys. Rev. 124, 1426 (1961).
[CrossRef]

Jaluria, Y.

Jiang, W.

Ju, Y.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004).
[CrossRef]

Kawaguchi, Y.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nat. Photonics 6, 248 (2012).
[CrossRef]

Kim, S.-B.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004).
[CrossRef]

Kim, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004).
[CrossRef]

Krauss, T. F.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nat. Photonics 3, 206 (2009).
[CrossRef]

Kunishi, W.

T. Asano, W. Kunishi, M. Nakamura, B. Song, and S. Noda, Electron. Lett. 41, 37 (2005).
[CrossRef]

Kuramochi, E.

Kwon, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004).
[CrossRef]

Lee, J.-B.

Lee, Y.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004).
[CrossRef]

Matsuo, S.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nat. Photonics 6, 248 (2012).
[CrossRef]

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, Opt. Lett. 30, 2575 (2005).
[CrossRef]

Monat, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nat. Photonics 3, 206 (2009).
[CrossRef]

Morris, R. G.

R. G. Morris and J. G. Hust, Phys. Rev. 124, 1426 (1961).
[CrossRef]

Moss, D. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nat. Photonics 3, 206 (2009).
[CrossRef]

Nakamura, M.

T. Asano, W. Kunishi, M. Nakamura, B. Song, and S. Noda, Electron. Lett. 41, 37 (2005).
[CrossRef]

Neel, D.

Z. Han, X. Checoury, D. Neel, S. David, M. El Kurdi, and P. Boucaud, Opt. Commun. 283, 4387 (2010).
[CrossRef]

Noda, S.

T. Uesugi, B. S. Song, T. Asano, and S. Noda, Opt. Express 14, 377 (2006).
[CrossRef]

T. Asano, W. Kunishi, M. Nakamura, B. Song, and S. Noda, Electron. Lett. 41, 37 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef]

Notomi, M.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nat. Photonics 6, 248 (2012).
[CrossRef]

L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, Opt. Express 17, 21108 (2009).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, Opt. Lett. 30, 2575 (2005).
[CrossRef]

Nozaki, K.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nat. Photonics 6, 248 (2012).
[CrossRef]

O’Faolain, L.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nat. Photonics 3, 206 (2009).
[CrossRef]

Painter, O.

Park, H.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004).
[CrossRef]

Reed, G. T.

Rendina, I.

G. Cocorullo, F. G. Della Corte, and I. Rendina, Appl. Phys. Lett. 74, 3338 (1999).
[CrossRef]

Sato, T.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nat. Photonics 6, 248 (2012).
[CrossRef]

Segawa, T.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nat. Photonics 6, 248 (2012).
[CrossRef]

Shinya, A.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nat. Photonics 6, 248 (2012).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, Opt. Lett. 30, 2575 (2005).
[CrossRef]

Song, B.

T. Asano, W. Kunishi, M. Nakamura, B. Song, and S. Noda, Electron. Lett. 41, 37 (2005).
[CrossRef]

Song, B. S.

T. Uesugi, B. S. Song, T. Asano, and S. Noda, Opt. Express 14, 377 (2006).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef]

Song, W.

Srinivasan, K.

Suzaki, Y.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nat. Photonics 6, 248 (2012).
[CrossRef]

Takahashi, R.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nat. Photonics 6, 248 (2012).
[CrossRef]

Tanabe, T.

Tinker, M.

Uesugi, T.

Watanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

White, T. P.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nat. Photonics 3, 206 (2009).
[CrossRef]

Yang, J.-K.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

G. Cocorullo, F. G. Della Corte, and I. Rendina, Appl. Phys. Lett. 74, 3338 (1999).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Electron. Lett. (1)

T. Asano, W. Kunishi, M. Nakamura, B. Song, and S. Noda, Electron. Lett. 41, 37 (2005).
[CrossRef]

Nat. Photonics (2)

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nat. Photonics 6, 248 (2012).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nat. Photonics 3, 206 (2009).
[CrossRef]

Nature (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef]

Opt. Commun. (1)

Z. Han, X. Checoury, D. Neel, S. David, M. El Kurdi, and P. Boucaud, Opt. Commun. 283, 4387 (2010).
[CrossRef]

Opt. Express (9)

Opt. Lett. (1)

Phys. Rev. (1)

R. G. Morris and J. G. Hust, Phys. Rev. 124, 1426 (1961).
[CrossRef]

Phys. Rev. B (1)

X. Checoury, Z. Han, and P. Boucaud, Phys. Rev. B 82, 041308 (2010).
[CrossRef]

Science (1)

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Scanning electron microscopy image of the studied photonic crystal structure. (b) Zoom around the cavity surrounded by the two metallic pads. The cavity is defined by a width modulation of the waveguide formed by one missing row of air holes. The center of the cavity mode lies between the metal pads.

Fig. 2.
Fig. 2.

Photocurrent (nA) as a function of incident power (μW) for a 10 V applied bias. The input power corresponds to the waveguide power in front of the photonic crystal cavity. The pump wavelength is 1538 nm.

Fig. 3.
Fig. 3.

Output power for different applied bias. The input power is 200 μW. The wavelength is scanned from a short to long wavelength. The output power corresponds to the power in the waveguide at the exit of the photonic crystal cavity.

Fig. 4.
Fig. 4.

Spectral shift deduced from measurements as reported in Fig. 3 for different applied bias as a function of the optical input power. The thermal resistance is deduced from the difference of spectral shift between two applied bias for a fixed optical input power.

Tables (1)

Tables Icon

Table 1. Comparison Between the Experimental Value (Exp.) and Modeling for the Effective Thermal Resistance (Rth) (K/W) for Different Photonic Crystal Configurationsa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δλ=δnnSiλ0=nTΔTλ0nSi=nTRthPλ0nSi,
δλ(V2)δλ(V1)=RthnTλ0nSi(I(V2)V2I(V1)V1).

Metrics