Abstract

We have developed spatially Fourier-encoded photoacoustic (PA) microscopy using a digital micromirror device. The spatial intensity distribution of laser pulses is Fourier-encoded, and a series of such encoded PA measurements allows one to decode the spatial distribution of optical absorption. The throughput and Fellgett advantages were demonstrated by imaging a chromium target. By using 63 spatial elements, the signal-to-noise ratio in the recovered PA signal was enhanced by 4×. The system was used to image two biological targets, a monolayer of red blood cells and melanoma cells.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, Opt. Lett. 33, 929 (2008).
    [CrossRef]
  2. L. V. Wang and S. Hu, Science 335, 1458 (2012).
    [CrossRef]
  3. R. J. Paproski, A. E. Forbrich, K. Wachowicz, M. M. Hitt, and R. J. Zemp, Biomed. Opt. Express 2, 771 (2011).
    [CrossRef]
  4. S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, Opt. Express 18, 3967 (2010).
    [CrossRef]
  5. R. Li, M. N. Slipchenko, P. Wang, and J.-X. Cheng, J. Biomed. Opt. 18, 040502 (2013).
    [CrossRef]
  6. L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, J. Biomed. Opt. 18, 026003 (2013).
    [CrossRef]
  7. J. Liang, Y. Zhou, K. I. Maslov, and L. V. Wang, J. Biomed. Opt. 18, 096004 (2013).
    [CrossRef]
  8. Laser Institute of America, “American national standard for safe use of lasers,” (Laser Institute of America, Orlando, Florida, 2007).
  9. M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, Phys. Med. Biol. 52, 1349 (2007).
    [CrossRef]
  10. D. K. Graff, J. Chemical Education 72, 304 (1995).
    [CrossRef]
  11. J. A. de. Haseth and P. R. Griffiths, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley, 2006).
  12. R. M. Hammaker, A. P. Bohlke, J. M. Jarvis, J. D. Tate, J. S. White, J. V. Paukstelis, and W. G. Fateley, Proc. SPIE 1336, 124 (1990).
    [CrossRef]
  13. K. W. Eberhardt, A. Hunkeler, U. Meier, J. Tharian, S. Mouaziz, G. Boero, J. Brugger, and B. H. Meier, Phys. Rev. B 78, 214401 (2008).
    [CrossRef]
  14. Y. Wang, K. Maslov, and L. V. Wang, J. Biomed. Opt. 17, 0660201 (2012).
    [CrossRef]
  15. Q. S. Hanley, P. J. Verveer, D. J. Arndt-Jovin, and T. M. Jovin, J. Microsc. 197, 5 (2000).
    [CrossRef]
  16. G. Rousseau and A. Blouin, Opt. Express 20, 25798 (2012).
    [CrossRef]
  17. J. Liang, J. R. N. Kohn, M. F. Becker, and D. J. Heinzen, Appl. Opt. 48, 1955 (2009).
    [CrossRef]
  18. J. Liang, Y. Zhou, A. W. Winkler, L. Wang, K. I. Maslov, C. Li, and L. V. Wang, Opt. Lett. 38, 2683 (2013).
    [CrossRef]
  19. J. S. Steckenrider, T. W. Murray, J. W. Wagner, J. John, and B. Deaton, J. Acoust. Soc. Am. 97, 273 (1995).
    [CrossRef]

2013

R. Li, M. N. Slipchenko, P. Wang, and J.-X. Cheng, J. Biomed. Opt. 18, 040502 (2013).
[CrossRef]

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, J. Biomed. Opt. 18, 026003 (2013).
[CrossRef]

J. Liang, Y. Zhou, K. I. Maslov, and L. V. Wang, J. Biomed. Opt. 18, 096004 (2013).
[CrossRef]

J. Liang, Y. Zhou, A. W. Winkler, L. Wang, K. I. Maslov, C. Li, and L. V. Wang, Opt. Lett. 38, 2683 (2013).
[CrossRef]

2012

G. Rousseau and A. Blouin, Opt. Express 20, 25798 (2012).
[CrossRef]

Y. Wang, K. Maslov, and L. V. Wang, J. Biomed. Opt. 17, 0660201 (2012).
[CrossRef]

L. V. Wang and S. Hu, Science 335, 1458 (2012).
[CrossRef]

2011

2010

2009

2008

K. W. Eberhardt, A. Hunkeler, U. Meier, J. Tharian, S. Mouaziz, G. Boero, J. Brugger, and B. H. Meier, Phys. Rev. B 78, 214401 (2008).
[CrossRef]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, Opt. Lett. 33, 929 (2008).
[CrossRef]

2007

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, Phys. Med. Biol. 52, 1349 (2007).
[CrossRef]

2000

Q. S. Hanley, P. J. Verveer, D. J. Arndt-Jovin, and T. M. Jovin, J. Microsc. 197, 5 (2000).
[CrossRef]

1995

J. S. Steckenrider, T. W. Murray, J. W. Wagner, J. John, and B. Deaton, J. Acoust. Soc. Am. 97, 273 (1995).
[CrossRef]

D. K. Graff, J. Chemical Education 72, 304 (1995).
[CrossRef]

1990

R. M. Hammaker, A. P. Bohlke, J. M. Jarvis, J. D. Tate, J. S. White, J. V. Paukstelis, and W. G. Fateley, Proc. SPIE 1336, 124 (1990).
[CrossRef]

Arndt-Jovin, D. J.

Q. S. Hanley, P. J. Verveer, D. J. Arndt-Jovin, and T. M. Jovin, J. Microsc. 197, 5 (2000).
[CrossRef]

Becker, M. F.

Blouin, A.

Boero, G.

K. W. Eberhardt, A. Hunkeler, U. Meier, J. Tharian, S. Mouaziz, G. Boero, J. Brugger, and B. H. Meier, Phys. Rev. B 78, 214401 (2008).
[CrossRef]

Bohlke, A. P.

R. M. Hammaker, A. P. Bohlke, J. M. Jarvis, J. D. Tate, J. S. White, J. V. Paukstelis, and W. G. Fateley, Proc. SPIE 1336, 124 (1990).
[CrossRef]

Brugger, J.

K. W. Eberhardt, A. Hunkeler, U. Meier, J. Tharian, S. Mouaziz, G. Boero, J. Brugger, and B. H. Meier, Phys. Rev. B 78, 214401 (2008).
[CrossRef]

Cheng, J.-X.

R. Li, M. N. Slipchenko, P. Wang, and J.-X. Cheng, J. Biomed. Opt. 18, 040502 (2013).
[CrossRef]

de. Haseth, J. A.

J. A. de. Haseth and P. R. Griffiths, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley, 2006).

Deaton, B.

J. S. Steckenrider, T. W. Murray, J. W. Wagner, J. John, and B. Deaton, J. Acoust. Soc. Am. 97, 273 (1995).
[CrossRef]

Eberhardt, K. W.

K. W. Eberhardt, A. Hunkeler, U. Meier, J. Tharian, S. Mouaziz, G. Boero, J. Brugger, and B. H. Meier, Phys. Rev. B 78, 214401 (2008).
[CrossRef]

Fateley, W. G.

R. M. Hammaker, A. P. Bohlke, J. M. Jarvis, J. D. Tate, J. S. White, J. V. Paukstelis, and W. G. Fateley, Proc. SPIE 1336, 124 (1990).
[CrossRef]

Fawzi, A.

Forbrich, A. E.

Gao, L.

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, J. Biomed. Opt. 18, 026003 (2013).
[CrossRef]

Graff, D. K.

D. K. Graff, J. Chemical Education 72, 304 (1995).
[CrossRef]

Griffiths, P. R.

J. A. de. Haseth and P. R. Griffiths, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley, 2006).

Hammaker, R. M.

R. M. Hammaker, A. P. Bohlke, J. M. Jarvis, J. D. Tate, J. S. White, J. V. Paukstelis, and W. G. Fateley, Proc. SPIE 1336, 124 (1990).
[CrossRef]

Hanley, Q. S.

Q. S. Hanley, P. J. Verveer, D. J. Arndt-Jovin, and T. M. Jovin, J. Microsc. 197, 5 (2000).
[CrossRef]

Heinzen, D. J.

Hitt, M. M.

Hu, J.

Hu, S.

Hunkeler, A.

K. W. Eberhardt, A. Hunkeler, U. Meier, J. Tharian, S. Mouaziz, G. Boero, J. Brugger, and B. H. Meier, Phys. Rev. B 78, 214401 (2008).
[CrossRef]

Jarvis, J. M.

R. M. Hammaker, A. P. Bohlke, J. M. Jarvis, J. D. Tate, J. S. White, J. V. Paukstelis, and W. G. Fateley, Proc. SPIE 1336, 124 (1990).
[CrossRef]

Jiang, M.

Jiao, S.

John, J.

J. S. Steckenrider, T. W. Murray, J. W. Wagner, J. John, and B. Deaton, J. Acoust. Soc. Am. 97, 273 (1995).
[CrossRef]

Jovin, T. M.

Q. S. Hanley, P. J. Verveer, D. J. Arndt-Jovin, and T. M. Jovin, J. Microsc. 197, 5 (2000).
[CrossRef]

Ke, H.

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, J. Biomed. Opt. 18, 026003 (2013).
[CrossRef]

Kohn, J. R. N.

Li, C.

J. Liang, Y. Zhou, A. W. Winkler, L. Wang, K. I. Maslov, C. Li, and L. V. Wang, Opt. Lett. 38, 2683 (2013).
[CrossRef]

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, J. Biomed. Opt. 18, 026003 (2013).
[CrossRef]

Li, R.

R. Li, M. N. Slipchenko, P. Wang, and J.-X. Cheng, J. Biomed. Opt. 18, 040502 (2013).
[CrossRef]

Liang, J.

Liu, Y.

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, J. Biomed. Opt. 18, 026003 (2013).
[CrossRef]

Maslov, K.

Y. Wang, K. Maslov, and L. V. Wang, J. Biomed. Opt. 17, 0660201 (2012).
[CrossRef]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, Opt. Lett. 33, 929 (2008).
[CrossRef]

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, Phys. Med. Biol. 52, 1349 (2007).
[CrossRef]

Maslov, K. I.

J. Liang, Y. Zhou, K. I. Maslov, and L. V. Wang, J. Biomed. Opt. 18, 096004 (2013).
[CrossRef]

J. Liang, Y. Zhou, A. W. Winkler, L. Wang, K. I. Maslov, C. Li, and L. V. Wang, Opt. Lett. 38, 2683 (2013).
[CrossRef]

Meier, B. H.

K. W. Eberhardt, A. Hunkeler, U. Meier, J. Tharian, S. Mouaziz, G. Boero, J. Brugger, and B. H. Meier, Phys. Rev. B 78, 214401 (2008).
[CrossRef]

Meier, U.

K. W. Eberhardt, A. Hunkeler, U. Meier, J. Tharian, S. Mouaziz, G. Boero, J. Brugger, and B. H. Meier, Phys. Rev. B 78, 214401 (2008).
[CrossRef]

Mouaziz, S.

K. W. Eberhardt, A. Hunkeler, U. Meier, J. Tharian, S. Mouaziz, G. Boero, J. Brugger, and B. H. Meier, Phys. Rev. B 78, 214401 (2008).
[CrossRef]

Murray, T. W.

J. S. Steckenrider, T. W. Murray, J. W. Wagner, J. John, and B. Deaton, J. Acoust. Soc. Am. 97, 273 (1995).
[CrossRef]

Paproski, R. J.

Paukstelis, J. V.

R. M. Hammaker, A. P. Bohlke, J. M. Jarvis, J. D. Tate, J. S. White, J. V. Paukstelis, and W. G. Fateley, Proc. SPIE 1336, 124 (1990).
[CrossRef]

Puliafito, C. A.

Rousseau, G.

Shung, K. K.

Sivaramakrishnan, M.

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, Phys. Med. Biol. 52, 1349 (2007).
[CrossRef]

Slipchenko, M. N.

R. Li, M. N. Slipchenko, P. Wang, and J.-X. Cheng, J. Biomed. Opt. 18, 040502 (2013).
[CrossRef]

Steckenrider, J. S.

J. S. Steckenrider, T. W. Murray, J. W. Wagner, J. John, and B. Deaton, J. Acoust. Soc. Am. 97, 273 (1995).
[CrossRef]

Stoica, G.

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, Phys. Med. Biol. 52, 1349 (2007).
[CrossRef]

Tate, J. D.

R. M. Hammaker, A. P. Bohlke, J. M. Jarvis, J. D. Tate, J. S. White, J. V. Paukstelis, and W. G. Fateley, Proc. SPIE 1336, 124 (1990).
[CrossRef]

Tharian, J.

K. W. Eberhardt, A. Hunkeler, U. Meier, J. Tharian, S. Mouaziz, G. Boero, J. Brugger, and B. H. Meier, Phys. Rev. B 78, 214401 (2008).
[CrossRef]

Verveer, P. J.

Q. S. Hanley, P. J. Verveer, D. J. Arndt-Jovin, and T. M. Jovin, J. Microsc. 197, 5 (2000).
[CrossRef]

Wachowicz, K.

Wagner, J. W.

J. S. Steckenrider, T. W. Murray, J. W. Wagner, J. John, and B. Deaton, J. Acoust. Soc. Am. 97, 273 (1995).
[CrossRef]

Wang, L.

J. Liang, Y. Zhou, A. W. Winkler, L. Wang, K. I. Maslov, C. Li, and L. V. Wang, Opt. Lett. 38, 2683 (2013).
[CrossRef]

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, J. Biomed. Opt. 18, 026003 (2013).
[CrossRef]

Wang, L. V.

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, J. Biomed. Opt. 18, 026003 (2013).
[CrossRef]

J. Liang, Y. Zhou, K. I. Maslov, and L. V. Wang, J. Biomed. Opt. 18, 096004 (2013).
[CrossRef]

J. Liang, Y. Zhou, A. W. Winkler, L. Wang, K. I. Maslov, C. Li, and L. V. Wang, Opt. Lett. 38, 2683 (2013).
[CrossRef]

L. V. Wang and S. Hu, Science 335, 1458 (2012).
[CrossRef]

Y. Wang, K. Maslov, and L. V. Wang, J. Biomed. Opt. 17, 0660201 (2012).
[CrossRef]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, Opt. Lett. 33, 929 (2008).
[CrossRef]

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, Phys. Med. Biol. 52, 1349 (2007).
[CrossRef]

Wang, P.

R. Li, M. N. Slipchenko, P. Wang, and J.-X. Cheng, J. Biomed. Opt. 18, 040502 (2013).
[CrossRef]

Wang, Y.

Y. Wang, K. Maslov, and L. V. Wang, J. Biomed. Opt. 17, 0660201 (2012).
[CrossRef]

White, J. S.

R. M. Hammaker, A. P. Bohlke, J. M. Jarvis, J. D. Tate, J. S. White, J. V. Paukstelis, and W. G. Fateley, Proc. SPIE 1336, 124 (1990).
[CrossRef]

Winkler, A. W.

Zemp, R. J.

Zhang, C.

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, J. Biomed. Opt. 18, 026003 (2013).
[CrossRef]

Zhang, H. F.

Zhou, Q.

Zhou, Y.

J. Liang, Y. Zhou, A. W. Winkler, L. Wang, K. I. Maslov, C. Li, and L. V. Wang, Opt. Lett. 38, 2683 (2013).
[CrossRef]

J. Liang, Y. Zhou, K. I. Maslov, and L. V. Wang, J. Biomed. Opt. 18, 096004 (2013).
[CrossRef]

Appl. Opt.

Biomed. Opt. Express

J. Acoust. Soc. Am.

J. S. Steckenrider, T. W. Murray, J. W. Wagner, J. John, and B. Deaton, J. Acoust. Soc. Am. 97, 273 (1995).
[CrossRef]

J. Biomed. Opt.

Y. Wang, K. Maslov, and L. V. Wang, J. Biomed. Opt. 17, 0660201 (2012).
[CrossRef]

R. Li, M. N. Slipchenko, P. Wang, and J.-X. Cheng, J. Biomed. Opt. 18, 040502 (2013).
[CrossRef]

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, J. Biomed. Opt. 18, 026003 (2013).
[CrossRef]

J. Liang, Y. Zhou, K. I. Maslov, and L. V. Wang, J. Biomed. Opt. 18, 096004 (2013).
[CrossRef]

J. Chemical Education

D. K. Graff, J. Chemical Education 72, 304 (1995).
[CrossRef]

J. Microsc.

Q. S. Hanley, P. J. Verveer, D. J. Arndt-Jovin, and T. M. Jovin, J. Microsc. 197, 5 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, Phys. Med. Biol. 52, 1349 (2007).
[CrossRef]

Phys. Rev. B

K. W. Eberhardt, A. Hunkeler, U. Meier, J. Tharian, S. Mouaziz, G. Boero, J. Brugger, and B. H. Meier, Phys. Rev. B 78, 214401 (2008).
[CrossRef]

Proc. SPIE

R. M. Hammaker, A. P. Bohlke, J. M. Jarvis, J. D. Tate, J. S. White, J. V. Paukstelis, and W. G. Fateley, Proc. SPIE 1336, 124 (1990).
[CrossRef]

Science

L. V. Wang and S. Hu, Science 335, 1458 (2012).
[CrossRef]

Other

J. A. de. Haseth and P. R. Griffiths, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley, 2006).

Laser Institute of America, “American national standard for safe use of lasers,” (Laser Institute of America, Orlando, Florida, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Principle of SFE-PAM. A three-pixel encoding of (F^f(n,k), n=1,,3) is illustrated. (a) The target is illuminated by a series of patterns. The laser fluence of each element in the pattern is modulated at a different frequency. (b) Light fluence of each element versus illumination pattern index. (c) Absorption coefficients recovered with Fourier decoding.

Fig. 2.
Fig. 2.

Schematic overview of the SFE-PAM (not to scale): AMP, signal amplifiers and filters; BS, beam sampler; DAQ, data acquisition system; DMD, digital micromirror device; L1 and L2, lenses; M1 and M2, mirrors; OL1, objective lens (Mitutoyo, M PLAN APO 10×/0.28); OL2, objective lens (Olympus, LUCPlanFLN 40×/0.60); PD, photodiode detector; UT, ultrasonic transducer.

Fig. 3.
Fig. 3.

(a) Photograph of a chromium target of the letters “WU.” (b) Stack of PA A-lines of the letter “U” acquired with raster scanning. The measurement result from the raster scanning was acquired twice and averaged to match the total number of signals acquired with the Fourier encoding. (c) Stack of radio-frequency PA signals of the letter “U” acquired by Fourier encoding. (d) Comparison of PA signals (between red triangles) in (b) and (c). (e) Stack of Fourier-decoded PA A-lines of the letter “U.” (f) Comparison of PA A-lines (between red triangles) in (b) and (e).

Fig. 4.
Fig. 4.

PA images of a “WU” logo made of deposited chromium acquired by (a) raster scanning and (b) Fourier encoding.

Fig. 5.
Fig. 5.

Demonstration of spatial Fourier-encoding method in biological targets. PA images of monolayer RBCs acquired by (a) raster scanning and (b) Fourier encoding. RBCs are identified by white dashed circles. A melanoma cell was also imaged using (c) raster scanning and (d) Fourier encoding.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

vr(n,t)=sr(n,t)+e(n,t),
sr(n,t)=μa(n)F0(n)v^(t).
Vf(k,t)=(n=1Nμa(n)F0(n)F^f(n,k))v^(t)+e(k,t),
vf(m,t)=sf(m,t)+ε(m,t),m=N,,N+1,
sf(m,t)=12(N+1)k=02N+1{(n=1Nμa(n)F0(n)F^f(n,k))v^(t)}exp(iπmkN+1),
ε(m,t)=12(N+1)k=02N+1e(k,t)exp(iπmkN+1).
sf(m,t)=12n=1Nμa(n)F0(n)δmnv^(t),
|H{sf(n,t)}||H{sr(n,t)}|=12,
σf=12(N+1)σr.
σf=1N+1σr.
ηSNRf(n,t)SNRr(n,t)=N+12.

Metrics