Abstract

We have demonstrated an efficient inverted CdSe/CdS/ZnS core/shell quantum-dot light-emitting device (QD-LED) using a solution-processed sol–gel TiO2 and ZnO nanoparticle composite layer as an electron-injection layer with controllable morphology and investigated the electroluminescence mechanism. The introduction of the ZnO layer can lead to the formation of spin-coated uniform QD films and fabrication of high-luminance QD-LEDs. The TiO2 layer improves the balance of charge injection due to its lower electron mobility relative to the ZnO layer. These results offer a practicable platform for the realization of a trade-off between the luminance and efficiency in the inverted QD-LEDs with TiO2/ZnO composites as the electron contact layer.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription