Abstract

We present a method of fully interferometric, controllable anomalous refraction efficiency by introducing cross-modulated incident light based on plasmonic metasurfaces. Theoretical analyses and numerical simulations indicate that the anomalous and ordinary refracted beams generated from two opposite-helicity incident beams and following the generalized Snell’s law will have a superposition for certain incident angles, and the anomalous refraction efficiency can be dynamically controlled by changing the relative phase of the incident sources. As the incident wavelength nears the resonant wavelength of the plasmonic metasurfaces, two equal-amplitude incident beams with opposite helicity can be used to control the anomalous refraction efficiency. Otherwise, two unequal-amplitude incident beams with opposite helicity can be used to fully control the anomalous refraction efficiency. This Letter may offer a further step in the development of controllable anomalous refraction.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient wavefront manipulation in terahertz based on plasmonic gradient metasurfaces

Jun Luo, Honglin Yu, Maowen Song, and Zuojun Zhang
Opt. Lett. 39(8) 2229-2231 (2014)

Coherent control of Snell’s law at metasurfaces

Jinhui Shi, Xu Fang, Edward T. F. Rogers, Eric Plum, Kevin F. MacDonald, and Nikolay I. Zheludev
Opt. Express 22(17) 21051-21060 (2014)

Generalized nonlinear Snell’s law at χ(2) modulated nonlinear metasurfaces: anomalous nonlinear refraction and reflection

Jing Zhang, Xiaohui Zhao, Yuanlin Zheng, and Xianfeng Chen
Opt. Lett. 44(2) 431-434 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription