Abstract

We present a novel acousto-optic (AO) method, based on a nanosecond laser system, which will enable us to obtain AO signals in liquid turbid media. By diverting part of the light in a delay line, we inject tandem pulses with 27 ns separation. The change of the speckle pattern, caused by the ultrasound phase shift, reduces the speckle contrast of the integrated speckle pattern captured in a single camera frame. With these tandem pulses, we were able to perform AO on a 2 cm liquid turbid medium in transmission mode. We show the raw signal and a spatial AO scan of a homogenous water-intralipid sample. This approach is potentially capable of AO probing in vivo, since the acquisition time (of approximately 40 ns) is four orders of magnitude less than the typical time scales of speckle decorrelation found in vivo. The method may eventually enable us to obtain fluence compensated photoacoustic signals generated by the same laser.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Towards acousto-optic tissue imaging with nanosecond laser pulses

S.G. Resink, E. Hondebrink, and W. Steenbergen
Opt. Express 22(3) 3564-3571 (2014)

Methods for parallel-detection-based ultrasound-modulated optical tomography

Jun Li and Lihong V. Wang
Appl. Opt. 41(10) 2079-2084 (2002)

References

  • View by:
  • |
  • |
  • |

  1. D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M. X. Tang, Interface Focus 1, 632 (2011).
  2. S. G. Resink, A. C. Boccara, and W. Steenbergen, J. Biomed. Opt. 17, 040901 (2012).
    [Crossref]
  3. K. Daoudi, A. Hussain, E. Hondebrink, and W. Steenbergen, Opt. Express 20, 14117 (2012).
    [Crossref]
  4. Y. Z. Li, P. Hemmer, C. H. Kim, H. L. Zhang, and L. H. V. Wang, Opt. Express 16, 14862 (2008).
    [Crossref]
  5. S. Sakadzic and L. H. V. Wang, Opt. Lett. 29, 2770 (2004).
    [Crossref]
  6. L. H. V. Wang, Dis. Markers 19, 123 (2003).
  7. M. Lesaffre, F. Jean, F. Ramaz, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, Opt. Express 15, 1030 (2007).
    [Crossref]
  8. S. G. Resink, E. Hondebrink, and W. Steenbergen, Opt. Express 22, 3564 (2014).
    [Crossref]
  9. B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. H. Yang, Nat. Photonics 7, 300 (2013).
    [Crossref]
  10. J. Li, G. Ku, and L. H. V. Wang, Appl. Opt. 41, 6030 (2002).
    [Crossref]
  11. I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
    [Crossref]
  12. A. Bratchenia, “Towards quantitative acoustic-optic imaging,” Ph.D. dissertation (University of Twente, Enschede, The Netherlands, 2010), p. 148.
  13. A. Lev and B. Sfez, J. Opt. Soc. Am. A 20, 2347 (2003).
    [Crossref]
  14. M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, Opt. Lett. 30, 1360 (2005).
    [Crossref]
  15. K. Daoudi, A. C. Boccara, and E. Bossy, Appl. Phys. Lett. 94, 154103 (2009).
    [Crossref]

2014 (1)

2013 (1)

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. H. Yang, Nat. Photonics 7, 300 (2013).
[Crossref]

2012 (2)

S. G. Resink, A. C. Boccara, and W. Steenbergen, J. Biomed. Opt. 17, 040901 (2012).
[Crossref]

K. Daoudi, A. Hussain, E. Hondebrink, and W. Steenbergen, Opt. Express 20, 14117 (2012).
[Crossref]

2011 (1)

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M. X. Tang, Interface Focus 1, 632 (2011).

2009 (1)

K. Daoudi, A. C. Boccara, and E. Bossy, Appl. Phys. Lett. 94, 154103 (2009).
[Crossref]

2008 (1)

2007 (1)

2005 (1)

2004 (1)

2003 (2)

L. H. V. Wang, Dis. Markers 19, 123 (2003).

A. Lev and B. Sfez, J. Opt. Soc. Am. A 20, 2347 (2003).
[Crossref]

2002 (1)

1988 (1)

I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[Crossref]

Atlan, M.

Boccara, A. C.

S. G. Resink, A. C. Boccara, and W. Steenbergen, J. Biomed. Opt. 17, 040901 (2012).
[Crossref]

K. Daoudi, A. C. Boccara, and E. Bossy, Appl. Phys. Lett. 94, 154103 (2009).
[Crossref]

M. Lesaffre, F. Jean, F. Ramaz, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, Opt. Express 15, 1030 (2007).
[Crossref]

M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, Opt. Lett. 30, 1360 (2005).
[Crossref]

Bossy, E.

K. Daoudi, A. C. Boccara, and E. Bossy, Appl. Phys. Lett. 94, 154103 (2009).
[Crossref]

Bratchenia, A.

A. Bratchenia, “Towards quantitative acoustic-optic imaging,” Ph.D. dissertation (University of Twente, Enschede, The Netherlands, 2010), p. 148.

Daoudi, K.

K. Daoudi, A. Hussain, E. Hondebrink, and W. Steenbergen, Opt. Express 20, 14117 (2012).
[Crossref]

K. Daoudi, A. C. Boccara, and E. Bossy, Appl. Phys. Lett. 94, 154103 (2009).
[Crossref]

Delaye, P.

Dunsby, C.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M. X. Tang, Interface Focus 1, 632 (2011).

Eckersley, R.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M. X. Tang, Interface Focus 1, 632 (2011).

Elson, D. S.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M. X. Tang, Interface Focus 1, 632 (2011).

Feng, S.

I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[Crossref]

Forget, B. C.

Freund, I.

I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[Crossref]

Gross, M.

Hemmer, P.

Hondebrink, E.

Horstmeyer, R.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. H. Yang, Nat. Photonics 7, 300 (2013).
[Crossref]

Hussain, A.

Jean, F.

Judkewitz, B.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. H. Yang, Nat. Photonics 7, 300 (2013).
[Crossref]

Kim, C. H.

Ku, G.

Lesaffre, M.

Lev, A.

Li, J.

Li, R.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M. X. Tang, Interface Focus 1, 632 (2011).

Li, Y. Z.

Mathy, A.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. H. Yang, Nat. Photonics 7, 300 (2013).
[Crossref]

Ramaz, F.

Resink, S. G.

S. G. Resink, E. Hondebrink, and W. Steenbergen, Opt. Express 22, 3564 (2014).
[Crossref]

S. G. Resink, A. C. Boccara, and W. Steenbergen, J. Biomed. Opt. 17, 040901 (2012).
[Crossref]

Roosen, G.

Rosenbluh, M.

I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[Crossref]

Sakadzic, S.

Sfez, B.

Steenbergen, W.

Tang, M. X.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M. X. Tang, Interface Focus 1, 632 (2011).

Wang, L. H. V.

Wang, Y. M.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. H. Yang, Nat. Photonics 7, 300 (2013).
[Crossref]

Yang, C. H.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. H. Yang, Nat. Photonics 7, 300 (2013).
[Crossref]

Zhang, H. L.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Daoudi, A. C. Boccara, and E. Bossy, Appl. Phys. Lett. 94, 154103 (2009).
[Crossref]

Dis. Markers (1)

L. H. V. Wang, Dis. Markers 19, 123 (2003).

Interface Focus (1)

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M. X. Tang, Interface Focus 1, 632 (2011).

J. Biomed. Opt. (1)

S. G. Resink, A. C. Boccara, and W. Steenbergen, J. Biomed. Opt. 17, 040901 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. H. Yang, Nat. Photonics 7, 300 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[Crossref]

Other (1)

A. Bratchenia, “Towards quantitative acoustic-optic imaging,” Ph.D. dissertation (University of Twente, Enschede, The Netherlands, 2010), p. 148.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental setup; AMP, amplifier; BD, beam dump; BE, beam expander; BS, 5050 beamsplitter; D, diaphragm; FG, function generator; FL, flash lamp trigger of laser; L, lens (f=1000mm); M, mirror; PBS, polarizing beam splitter; QS, Q-switch trigger of laser; TR, US transducer.
Fig. 2.
Fig. 2. Temporal profile of the tandem pulse, resulting from the 8 m delay line, measured with a photodiode with a rise time less than 1 ns.
Fig. 3.
Fig. 3. Normalized speckle patterns for light transmitted through paper; (a) when only the short arm is used; (b) when both paths are used.
Fig. 4.
Fig. 4. Raw AO signal obtained with the setup, with US applied (+), interleaved with the background, when no US is applied (○). Each image point is generated by one pulse pair, separated by 27 ns.
Fig. 5.
Fig. 5. Distribution of ΔCnorm, measured in the xy plane, in a liquid scattering phantom.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Ii=Ii+Δi,
Ii=1+Δi.
C=σI,
Ci2=Δi2=Cmax2.
Csum2=(I1+I2)241=14(Δ12+Δ22)+12Δ1Δ2=12Cmax2+12X,
ΔCnormCmaxCsumCmax.
ΔCnorm=112+X2Cmax2.
ΔCnorm14X4Cmax2.

Metrics