Abstract

We demonstrate magnetic induction tomography (MIT) with an all-optical atomic magnetometer. Our instrument creates a conductivity map of conductive objects. Both the shape and size of the imaged samples compare very well with the actual shape and size. Given the potential of all-optical atomic magnetometers for miniaturization and extreme sensitivity, the proof-of-principle presented in this Letter opens up promising avenues in the development of instrumentation for MIT.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Through-barrier electromagnetic imaging with an atomic magnetometer

Cameron Deans, Luca Marmugi, and Ferruccio Renzoni
Opt. Express 25(15) 17911-17917 (2017)

Magnetic field imaging with microfabricated optically-pumped magnetometers

Orang Alem, Rahul Mhaskar, Ricardo Jiménez-Martínez, Dong Sheng, John LeBlanc, Lutz Trahms, Tilmann Sander, John Kitching, and Svenja Knappe
Opt. Express 25(7) 7849-7858 (2017)

High resolution electromagnetically induced transparency spectroscopy of Rydberg 87Rb atom in a magnetic field

H. Cheng, H. M. Wang, S. S. Zhang, P. P. Xin, J. Luo, and H. P. Liu
Opt. Express 25(26) 33575-33587 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Griffiths, Meas. Sci. Technol. 12, 1126 (2001).
    [Crossref]
  2. M. Zolgharni, H. Griffiths, and P. D. Ledger, Physiol. Meas. 31, S111 (2010).
    [Crossref]
  3. L. Ma, H.-Y. Wei, and M. Soleimani, Prog. Electromagn. Res. 23, 65 (2012).
  4. C. H. Riedel, M. Keppelen, S. Nani, R. D. Merges, and O. Dössel, Physiol. Meas. 25, 403 (2004).
    [Crossref]
  5. H. H. Gatzen, E. Andreeva, and H. Iswahjudi, IEEE Trans. Magn. 38, 3368 (2002).
    [Crossref]
  6. C. H. Smith, R. W. Schneider, T. Dogaru, and S. T. Smith, AIP Conf. Proc. 700, 406 (2004).
    [Crossref]
  7. D. Budker and M. V. Romalis, Nat. Phys. 3, 227 (2007).
    [Crossref]
  8. V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, Nat. Photonics 1, 649 (2007).
    [Crossref]
  9. P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, Appl. Phys. Lett. 90, 081102 (2007).
    [Crossref]
  10. W. C. Griffith, S. Knappe, and J. Kitching, Opt. Express 18, 27167 (2010).
    [Crossref]
  11. P. D. D. Schwindt, L. Hollberg, and J. Kitching, Rev. Sci. Instrum. 76, 126103 (2005).
    [Crossref]
  12. J. Belfi, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, K. Khanbekyan, and L. Moi, J. Opt. Soc. Am. B 26, 910 (2009).
    [Crossref]
  13. A. Wickenbrock, F. Tricot, and F. Renzoni, Appl. Phys. Lett. 103, 243503 (2013).
    [Crossref]
  14. H. Griffiths, W. Gough, S. Watson, and R. Williams, Physiol. Meas. 28, S301 (2007).
    [Crossref]
  15. R. Merwa, K. Hollaus, P. Brunner, and H. Scharfetter, Physiol. Meas. 26, S241 (2005).
    [Crossref]
  16. J. M. Savukov, S. J. Seltzer, and M. V. Romalis, J. Magn. Reson. 185, 214 (2007).

2013 (1)

A. Wickenbrock, F. Tricot, and F. Renzoni, Appl. Phys. Lett. 103, 243503 (2013).
[Crossref]

2012 (1)

L. Ma, H.-Y. Wei, and M. Soleimani, Prog. Electromagn. Res. 23, 65 (2012).

2010 (2)

M. Zolgharni, H. Griffiths, and P. D. Ledger, Physiol. Meas. 31, S111 (2010).
[Crossref]

W. C. Griffith, S. Knappe, and J. Kitching, Opt. Express 18, 27167 (2010).
[Crossref]

2009 (1)

2007 (5)

J. M. Savukov, S. J. Seltzer, and M. V. Romalis, J. Magn. Reson. 185, 214 (2007).

H. Griffiths, W. Gough, S. Watson, and R. Williams, Physiol. Meas. 28, S301 (2007).
[Crossref]

D. Budker and M. V. Romalis, Nat. Phys. 3, 227 (2007).
[Crossref]

V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, Nat. Photonics 1, 649 (2007).
[Crossref]

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, Appl. Phys. Lett. 90, 081102 (2007).
[Crossref]

2005 (2)

R. Merwa, K. Hollaus, P. Brunner, and H. Scharfetter, Physiol. Meas. 26, S241 (2005).
[Crossref]

P. D. D. Schwindt, L. Hollberg, and J. Kitching, Rev. Sci. Instrum. 76, 126103 (2005).
[Crossref]

2004 (2)

C. H. Smith, R. W. Schneider, T. Dogaru, and S. T. Smith, AIP Conf. Proc. 700, 406 (2004).
[Crossref]

C. H. Riedel, M. Keppelen, S. Nani, R. D. Merges, and O. Dössel, Physiol. Meas. 25, 403 (2004).
[Crossref]

2002 (1)

H. H. Gatzen, E. Andreeva, and H. Iswahjudi, IEEE Trans. Magn. 38, 3368 (2002).
[Crossref]

2001 (1)

H. Griffiths, Meas. Sci. Technol. 12, 1126 (2001).
[Crossref]

Andreeva, E.

H. H. Gatzen, E. Andreeva, and H. Iswahjudi, IEEE Trans. Magn. 38, 3368 (2002).
[Crossref]

Belfi, J.

Bevilacqua, G.

Biancalana, V.

Brunner, P.

R. Merwa, K. Hollaus, P. Brunner, and H. Scharfetter, Physiol. Meas. 26, S241 (2005).
[Crossref]

Budker, D.

D. Budker and M. V. Romalis, Nat. Phys. 3, 227 (2007).
[Crossref]

Cartaleva, S.

Dancheva, Y.

Dogaru, T.

C. H. Smith, R. W. Schneider, T. Dogaru, and S. T. Smith, AIP Conf. Proc. 700, 406 (2004).
[Crossref]

Dössel, O.

C. H. Riedel, M. Keppelen, S. Nani, R. D. Merges, and O. Dössel, Physiol. Meas. 25, 403 (2004).
[Crossref]

Gatzen, H. H.

H. H. Gatzen, E. Andreeva, and H. Iswahjudi, IEEE Trans. Magn. 38, 3368 (2002).
[Crossref]

Gough, W.

H. Griffiths, W. Gough, S. Watson, and R. Williams, Physiol. Meas. 28, S301 (2007).
[Crossref]

Griffith, W. C.

Griffiths, H.

M. Zolgharni, H. Griffiths, and P. D. Ledger, Physiol. Meas. 31, S111 (2010).
[Crossref]

H. Griffiths, W. Gough, S. Watson, and R. Williams, Physiol. Meas. 28, S301 (2007).
[Crossref]

H. Griffiths, Meas. Sci. Technol. 12, 1126 (2001).
[Crossref]

Hollaus, K.

R. Merwa, K. Hollaus, P. Brunner, and H. Scharfetter, Physiol. Meas. 26, S241 (2005).
[Crossref]

Hollberg, L.

P. D. D. Schwindt, L. Hollberg, and J. Kitching, Rev. Sci. Instrum. 76, 126103 (2005).
[Crossref]

Iswahjudi, H.

H. H. Gatzen, E. Andreeva, and H. Iswahjudi, IEEE Trans. Magn. 38, 3368 (2002).
[Crossref]

Keppelen, M.

C. H. Riedel, M. Keppelen, S. Nani, R. D. Merges, and O. Dössel, Physiol. Meas. 25, 403 (2004).
[Crossref]

Khanbekyan, K.

Kitching, J.

W. C. Griffith, S. Knappe, and J. Kitching, Opt. Express 18, 27167 (2010).
[Crossref]

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, Appl. Phys. Lett. 90, 081102 (2007).
[Crossref]

V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, Nat. Photonics 1, 649 (2007).
[Crossref]

P. D. D. Schwindt, L. Hollberg, and J. Kitching, Rev. Sci. Instrum. 76, 126103 (2005).
[Crossref]

Knappe, S.

W. C. Griffith, S. Knappe, and J. Kitching, Opt. Express 18, 27167 (2010).
[Crossref]

V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, Nat. Photonics 1, 649 (2007).
[Crossref]

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, Appl. Phys. Lett. 90, 081102 (2007).
[Crossref]

Ledger, P. D.

M. Zolgharni, H. Griffiths, and P. D. Ledger, Physiol. Meas. 31, S111 (2010).
[Crossref]

Liew, L.-A.

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, Appl. Phys. Lett. 90, 081102 (2007).
[Crossref]

Lindseth, B.

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, Appl. Phys. Lett. 90, 081102 (2007).
[Crossref]

Ma, L.

L. Ma, H.-Y. Wei, and M. Soleimani, Prog. Electromagn. Res. 23, 65 (2012).

Merges, R. D.

C. H. Riedel, M. Keppelen, S. Nani, R. D. Merges, and O. Dössel, Physiol. Meas. 25, 403 (2004).
[Crossref]

Merwa, R.

R. Merwa, K. Hollaus, P. Brunner, and H. Scharfetter, Physiol. Meas. 26, S241 (2005).
[Crossref]

Moi, L.

Nani, S.

C. H. Riedel, M. Keppelen, S. Nani, R. D. Merges, and O. Dössel, Physiol. Meas. 25, 403 (2004).
[Crossref]

Renzoni, F.

A. Wickenbrock, F. Tricot, and F. Renzoni, Appl. Phys. Lett. 103, 243503 (2013).
[Crossref]

Riedel, C. H.

C. H. Riedel, M. Keppelen, S. Nani, R. D. Merges, and O. Dössel, Physiol. Meas. 25, 403 (2004).
[Crossref]

Romalis, M. V.

J. M. Savukov, S. J. Seltzer, and M. V. Romalis, J. Magn. Reson. 185, 214 (2007).

D. Budker and M. V. Romalis, Nat. Phys. 3, 227 (2007).
[Crossref]

Savukov, J. M.

J. M. Savukov, S. J. Seltzer, and M. V. Romalis, J. Magn. Reson. 185, 214 (2007).

Scharfetter, H.

R. Merwa, K. Hollaus, P. Brunner, and H. Scharfetter, Physiol. Meas. 26, S241 (2005).
[Crossref]

Schneider, R. W.

C. H. Smith, R. W. Schneider, T. Dogaru, and S. T. Smith, AIP Conf. Proc. 700, 406 (2004).
[Crossref]

Schwindt, P. D. D.

V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, Nat. Photonics 1, 649 (2007).
[Crossref]

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, Appl. Phys. Lett. 90, 081102 (2007).
[Crossref]

P. D. D. Schwindt, L. Hollberg, and J. Kitching, Rev. Sci. Instrum. 76, 126103 (2005).
[Crossref]

Seltzer, S. J.

J. M. Savukov, S. J. Seltzer, and M. V. Romalis, J. Magn. Reson. 185, 214 (2007).

Shah, V.

V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, Nat. Photonics 1, 649 (2007).
[Crossref]

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, Appl. Phys. Lett. 90, 081102 (2007).
[Crossref]

Smith, C. H.

C. H. Smith, R. W. Schneider, T. Dogaru, and S. T. Smith, AIP Conf. Proc. 700, 406 (2004).
[Crossref]

Smith, S. T.

C. H. Smith, R. W. Schneider, T. Dogaru, and S. T. Smith, AIP Conf. Proc. 700, 406 (2004).
[Crossref]

Soleimani, M.

L. Ma, H.-Y. Wei, and M. Soleimani, Prog. Electromagn. Res. 23, 65 (2012).

Tricot, F.

A. Wickenbrock, F. Tricot, and F. Renzoni, Appl. Phys. Lett. 103, 243503 (2013).
[Crossref]

Watson, S.

H. Griffiths, W. Gough, S. Watson, and R. Williams, Physiol. Meas. 28, S301 (2007).
[Crossref]

Wei, H.-Y.

L. Ma, H.-Y. Wei, and M. Soleimani, Prog. Electromagn. Res. 23, 65 (2012).

Wickenbrock, A.

A. Wickenbrock, F. Tricot, and F. Renzoni, Appl. Phys. Lett. 103, 243503 (2013).
[Crossref]

Williams, R.

H. Griffiths, W. Gough, S. Watson, and R. Williams, Physiol. Meas. 28, S301 (2007).
[Crossref]

Zolgharni, M.

M. Zolgharni, H. Griffiths, and P. D. Ledger, Physiol. Meas. 31, S111 (2010).
[Crossref]

AIP Conf. Proc. (1)

C. H. Smith, R. W. Schneider, T. Dogaru, and S. T. Smith, AIP Conf. Proc. 700, 406 (2004).
[Crossref]

Appl. Phys. Lett. (2)

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, Appl. Phys. Lett. 90, 081102 (2007).
[Crossref]

A. Wickenbrock, F. Tricot, and F. Renzoni, Appl. Phys. Lett. 103, 243503 (2013).
[Crossref]

IEEE Trans. Magn. (1)

H. H. Gatzen, E. Andreeva, and H. Iswahjudi, IEEE Trans. Magn. 38, 3368 (2002).
[Crossref]

J. Magn. Reson. (1)

J. M. Savukov, S. J. Seltzer, and M. V. Romalis, J. Magn. Reson. 185, 214 (2007).

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

H. Griffiths, Meas. Sci. Technol. 12, 1126 (2001).
[Crossref]

Nat. Photonics (1)

V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, Nat. Photonics 1, 649 (2007).
[Crossref]

Nat. Phys. (1)

D. Budker and M. V. Romalis, Nat. Phys. 3, 227 (2007).
[Crossref]

Opt. Express (1)

Physiol. Meas. (4)

M. Zolgharni, H. Griffiths, and P. D. Ledger, Physiol. Meas. 31, S111 (2010).
[Crossref]

C. H. Riedel, M. Keppelen, S. Nani, R. D. Merges, and O. Dössel, Physiol. Meas. 25, 403 (2004).
[Crossref]

H. Griffiths, W. Gough, S. Watson, and R. Williams, Physiol. Meas. 28, S301 (2007).
[Crossref]

R. Merwa, K. Hollaus, P. Brunner, and H. Scharfetter, Physiol. Meas. 26, S241 (2005).
[Crossref]

Prog. Electromagn. Res. (1)

L. Ma, H.-Y. Wei, and M. Soleimani, Prog. Electromagn. Res. 23, 65 (2012).

Rev. Sci. Instrum. (1)

P. D. D. Schwindt, L. Hollberg, and J. Kitching, Rev. Sci. Instrum. 76, 126103 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Sketch of the experimental setup. A rubidium vapor cell acts as the sensor in a self-oscillating all-optical magnetometer setup. A magnetic field causes the polarization of the probe beam to oscillate at the Larmor frequency. The oscillating polarization signal is measured with a balanced polarimeter, made of a polarizing-beam splitter (PBS) cube and two photodiodes. An offset magnetic field applied along the z axis provides a working point around fdc=100kHz. An additional oscillating magnetic field is applied by modulating the current through a small coil with a function generator (FG). The coil is placed 2 mm in the z-direction, and 75 mm in the y-direction, with respect to the sensing region (the intersection of the pump and the probe beam). The oscillating field modulates the polarization rotation signal and induces eddy currents in a conducting object placed in its proximity. This secondary field can be detected by measuring the phase (Φ) and the magnitude (r) of the signal modulation. To get a measurable component at the modulation frequency (fac), the polarimeter signal is multiplied with the carrier frequency (fdc). The product signal is used as the error signal in a low bandwidth phase-locked loop (PLL), which locks a FG to the carrier frequency, by means of a proportional-integral-derivative (PID) controller. The unfiltered signal is fed to a lock-in amplifier, with the driving frequency as the reference signal (i.e., Ref in). To create images, the phase and magnitude of the modulation signal are recorded with a data acquisition device (DAQ) and a personal computer (PC), while varying the center position (Cx and Cy) of the object, which is detected by a CCD camera.

Fig. 2.
Fig. 2.

Normalized magnetic induction tomography: (a)–(c) different objects, (d) an example of the acquisition error, multiplied by a factor of 3 (phase) and 20 (amplitude), to be visible with the respective color coding. The first row shows the position resolved normalized amplitude of the ac magnetic field signal as detected by the lock-in amplifier. The second row shows the corresponding normalized phase data. Both amplitude and phase variation depend on the position of the object, with respect to the driving coil: (a) data for a 37mm×37mm square, (b) isosceles triangle with one side of 37 mm and two sides of 30 mm, (c) disk with 37 mm diameter, (d) amplified acquisition error for the disk data. All objects were made from 2 mm thick aluminium sheets.

Fig. 3.
Fig. 3.

Cross section through the center of the disk data (red triangles), compared to the background (blue filled diamonds). The vertical dashed lines indicate the extension of the disk. The vertical grey lines mark the FWHM size of the object. The horizontal solid grey lines mark the extreme and intermediate points in the signal used to determine the FWHM.

Metrics