Abstract

We compare the performance of a self-mixing (SM) sensing system based on an uncooled monolithic array of 24×1 vertical-cavity surface-emitting lasers (VCSELs) in two modes of operation: single active channel and the concurrent multichannel operation. We find that the signal-to-noise ratio of individual SM sensors in a VCSEL array is markedly improved by multichannel operation, as a consequence of the increased operational temperature of the sensors. The performance improvement can be further increased by manufacturing VCSEL arrays with smaller pitch. This has the potential to produce an imaging system with high spatial and temporal resolutions that can be operated without temperature stabilization.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Maeda, C. Chang-Hasnain, A. Von Lehmen, H. Izadpanah, C. Lin, M. Iqbal, L. Florez, and J. Harbison, J. IEEE Photon. Technol. Lett. 3, 863 (1991).
    [CrossRef]
  2. T. C. Banwell, A. C. Von Lehmen, and R. R. Cordell, IEEE J. Quantum Electron. 29, 635 (1993).
    [CrossRef]
  3. Y. Lim, M. Nikolic, K. Bertling, R. Kliese, and A. Rakic, Opt. Express 17, 5517 (2009).
    [CrossRef]
  4. Y. Lim, R. Kliese, K. Bertling, K. Tanimizu, P. Jacobs, and A. Rakic, Opt. Express 18, 11720 (2010).
    [CrossRef]
  5. F. F. Tsai, C. J. O’Brien, N. S. Petrovic, and A. D. Rakic, Appl. Opt. 46, 2434 (2007).
    [CrossRef]
  6. E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, Opt. Express 16, 6609 (2008).
    [CrossRef]
  7. W. Yang, P. Guo, D. Parekh, and C. J. Chang-Hasnain, Opt. Express 18, 20887 (2010).
    [CrossRef]
  8. R. Lang, IEEE J. Quantum Electron. 18, 976 (1982).
    [CrossRef]
  9. G. Heise, IEEE Photon. Technol. Lett. 2, 97 (1990).
    [CrossRef]
  10. S. Nakagawa, S.-Y. Hu, D. Louderback, and L. A. Coldren, IEEE Photon. Technol. Lett. 12, 612 (2000).
    [CrossRef]
  11. M. Châteauneuf, A. G. Kirk, D. V. Plant, T. Yamamoto, and J. D. Ahearn, Appl. Opt. 41, 5552 (2002).
    [CrossRef]
  12. R. Matharu, J. Perchoux, R. Kliese, Y. L. Lim, and A. D. Rakic, Opt. Lett. 36, 3690 (2011).
    [CrossRef]
  13. M. Nikolić, D. P. Jovanović, Y. L. Lim, K. Bertling, T. Taimre, and A. D. Rakić, Appl. Opt. 52, 3345 (2013).
    [CrossRef]
  14. K. Sato and M. Murakami, IEEE Photon. Technol. Lett. 3, 501 (1991).
    [CrossRef]
  15. M. Osinski and W. Nakwaski, IEEE J. Sel. Top. Quantum Electron. 1, 681 (1995).
    [CrossRef]
  16. P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolić, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonić, P. Harrison, A. D. Rakić, E. H. Linfield, and A. G. Davies, Opt. Lett. 36, 2587 (2011).
    [CrossRef]
  17. K. Rochford and A. Rose, Opt. Lett. 20, 2105 (1995).
    [CrossRef]
  18. C. Chen, P. O. Leisher, A. A. Allerman, K. M. Geib, and K. D. Choquette, IEEE J. Quantum Electron. 42, 1078 (2006).
    [CrossRef]
  19. J. R. Tucker, A. D. Rakic, C. J. O’Brien, and A. V. Zvyagin, Appl. Opt. 46, 611 (2007).
    [CrossRef]
  20. G. Hasnain, K. Tai, L. Yang, Y. Wang, R. Fischer, J. D. Wynn, B. Weir, N. Dutta, and A. Cho, IEEE J. Quantum Electron. 27, 1377 (1991).
    [CrossRef]

2013 (1)

2011 (2)

2010 (2)

2009 (1)

2008 (1)

2007 (2)

2006 (1)

C. Chen, P. O. Leisher, A. A. Allerman, K. M. Geib, and K. D. Choquette, IEEE J. Quantum Electron. 42, 1078 (2006).
[CrossRef]

2002 (1)

2000 (1)

S. Nakagawa, S.-Y. Hu, D. Louderback, and L. A. Coldren, IEEE Photon. Technol. Lett. 12, 612 (2000).
[CrossRef]

1995 (2)

K. Rochford and A. Rose, Opt. Lett. 20, 2105 (1995).
[CrossRef]

M. Osinski and W. Nakwaski, IEEE J. Sel. Top. Quantum Electron. 1, 681 (1995).
[CrossRef]

1993 (1)

T. C. Banwell, A. C. Von Lehmen, and R. R. Cordell, IEEE J. Quantum Electron. 29, 635 (1993).
[CrossRef]

1991 (3)

M. Maeda, C. Chang-Hasnain, A. Von Lehmen, H. Izadpanah, C. Lin, M. Iqbal, L. Florez, and J. Harbison, J. IEEE Photon. Technol. Lett. 3, 863 (1991).
[CrossRef]

K. Sato and M. Murakami, IEEE Photon. Technol. Lett. 3, 501 (1991).
[CrossRef]

G. Hasnain, K. Tai, L. Yang, Y. Wang, R. Fischer, J. D. Wynn, B. Weir, N. Dutta, and A. Cho, IEEE J. Quantum Electron. 27, 1377 (1991).
[CrossRef]

1990 (1)

G. Heise, IEEE Photon. Technol. Lett. 2, 97 (1990).
[CrossRef]

1982 (1)

R. Lang, IEEE J. Quantum Electron. 18, 976 (1982).
[CrossRef]

Ahearn, J. D.

Allerman, A. A.

C. Chen, P. O. Leisher, A. A. Allerman, K. M. Geib, and K. D. Choquette, IEEE J. Quantum Electron. 42, 1078 (2006).
[CrossRef]

Banwell, T. C.

T. C. Banwell, A. C. Von Lehmen, and R. R. Cordell, IEEE J. Quantum Electron. 29, 635 (1993).
[CrossRef]

Bertling, K.

Chang-Hasnain, C.

E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, Opt. Express 16, 6609 (2008).
[CrossRef]

M. Maeda, C. Chang-Hasnain, A. Von Lehmen, H. Izadpanah, C. Lin, M. Iqbal, L. Florez, and J. Harbison, J. IEEE Photon. Technol. Lett. 3, 863 (1991).
[CrossRef]

Chang-Hasnain, C. J.

Châteauneuf, M.

Chen, C.

C. Chen, P. O. Leisher, A. A. Allerman, K. M. Geib, and K. D. Choquette, IEEE J. Quantum Electron. 42, 1078 (2006).
[CrossRef]

Cho, A.

G. Hasnain, K. Tai, L. Yang, Y. Wang, R. Fischer, J. D. Wynn, B. Weir, N. Dutta, and A. Cho, IEEE J. Quantum Electron. 27, 1377 (1991).
[CrossRef]

Choquette, K. D.

C. Chen, P. O. Leisher, A. A. Allerman, K. M. Geib, and K. D. Choquette, IEEE J. Quantum Electron. 42, 1078 (2006).
[CrossRef]

Coldren, L. A.

S. Nakagawa, S.-Y. Hu, D. Louderback, and L. A. Coldren, IEEE Photon. Technol. Lett. 12, 612 (2000).
[CrossRef]

Cordell, R. R.

T. C. Banwell, A. C. Von Lehmen, and R. R. Cordell, IEEE J. Quantum Electron. 29, 635 (1993).
[CrossRef]

Davies, A. G.

Dean, P.

Dutta, N.

G. Hasnain, K. Tai, L. Yang, Y. Wang, R. Fischer, J. D. Wynn, B. Weir, N. Dutta, and A. Cho, IEEE J. Quantum Electron. 27, 1377 (1991).
[CrossRef]

Fischer, R.

G. Hasnain, K. Tai, L. Yang, Y. Wang, R. Fischer, J. D. Wynn, B. Weir, N. Dutta, and A. Cho, IEEE J. Quantum Electron. 27, 1377 (1991).
[CrossRef]

Florez, L.

M. Maeda, C. Chang-Hasnain, A. Von Lehmen, H. Izadpanah, C. Lin, M. Iqbal, L. Florez, and J. Harbison, J. IEEE Photon. Technol. Lett. 3, 863 (1991).
[CrossRef]

Geib, K. M.

C. Chen, P. O. Leisher, A. A. Allerman, K. M. Geib, and K. D. Choquette, IEEE J. Quantum Electron. 42, 1078 (2006).
[CrossRef]

Guo, P.

Harbison, J.

M. Maeda, C. Chang-Hasnain, A. Von Lehmen, H. Izadpanah, C. Lin, M. Iqbal, L. Florez, and J. Harbison, J. IEEE Photon. Technol. Lett. 3, 863 (1991).
[CrossRef]

Harrison, P.

Hasnain, G.

G. Hasnain, K. Tai, L. Yang, Y. Wang, R. Fischer, J. D. Wynn, B. Weir, N. Dutta, and A. Cho, IEEE J. Quantum Electron. 27, 1377 (1991).
[CrossRef]

Heise, G.

G. Heise, IEEE Photon. Technol. Lett. 2, 97 (1990).
[CrossRef]

Hu, S.-Y.

S. Nakagawa, S.-Y. Hu, D. Louderback, and L. A. Coldren, IEEE Photon. Technol. Lett. 12, 612 (2000).
[CrossRef]

Ikonic, Z.

Indjin, D.

Iqbal, M.

M. Maeda, C. Chang-Hasnain, A. Von Lehmen, H. Izadpanah, C. Lin, M. Iqbal, L. Florez, and J. Harbison, J. IEEE Photon. Technol. Lett. 3, 863 (1991).
[CrossRef]

Izadpanah, H.

M. Maeda, C. Chang-Hasnain, A. Von Lehmen, H. Izadpanah, C. Lin, M. Iqbal, L. Florez, and J. Harbison, J. IEEE Photon. Technol. Lett. 3, 863 (1991).
[CrossRef]

Jacobs, P.

Jovanovic, D. P.

Khanna, S. P.

Kirk, A. G.

Kliese, R.

Lachab, M.

Lang, R.

R. Lang, IEEE J. Quantum Electron. 18, 976 (1982).
[CrossRef]

Lau, E. K.

Leisher, P. O.

C. Chen, P. O. Leisher, A. A. Allerman, K. M. Geib, and K. D. Choquette, IEEE J. Quantum Electron. 42, 1078 (2006).
[CrossRef]

Lim, Y.

Lim, Y. L.

Lin, C.

M. Maeda, C. Chang-Hasnain, A. Von Lehmen, H. Izadpanah, C. Lin, M. Iqbal, L. Florez, and J. Harbison, J. IEEE Photon. Technol. Lett. 3, 863 (1991).
[CrossRef]

Linfield, E. H.

Louderback, D.

S. Nakagawa, S.-Y. Hu, D. Louderback, and L. A. Coldren, IEEE Photon. Technol. Lett. 12, 612 (2000).
[CrossRef]

Maeda, M.

M. Maeda, C. Chang-Hasnain, A. Von Lehmen, H. Izadpanah, C. Lin, M. Iqbal, L. Florez, and J. Harbison, J. IEEE Photon. Technol. Lett. 3, 863 (1991).
[CrossRef]

Matharu, R.

Murakami, M.

K. Sato and M. Murakami, IEEE Photon. Technol. Lett. 3, 501 (1991).
[CrossRef]

Nakagawa, S.

S. Nakagawa, S.-Y. Hu, D. Louderback, and L. A. Coldren, IEEE Photon. Technol. Lett. 12, 612 (2000).
[CrossRef]

Nakwaski, W.

M. Osinski and W. Nakwaski, IEEE J. Sel. Top. Quantum Electron. 1, 681 (1995).
[CrossRef]

Nikolic, M.

O’Brien, C. J.

Osinski, M.

M. Osinski and W. Nakwaski, IEEE J. Sel. Top. Quantum Electron. 1, 681 (1995).
[CrossRef]

Parekh, D.

Perchoux, J.

Petrovic, N. S.

Plant, D. V.

Rakic, A.

Rakic, A. D.

Rochford, K.

Rose, A.

Sato, K.

K. Sato and M. Murakami, IEEE Photon. Technol. Lett. 3, 501 (1991).
[CrossRef]

Sung, H.-K.

Tai, K.

G. Hasnain, K. Tai, L. Yang, Y. Wang, R. Fischer, J. D. Wynn, B. Weir, N. Dutta, and A. Cho, IEEE J. Quantum Electron. 27, 1377 (1991).
[CrossRef]

Taimre, T.

Tanimizu, K.

Tsai, F. F.

Tucker, J. R.

Valavanis, A.

Von Lehmen, A.

M. Maeda, C. Chang-Hasnain, A. Von Lehmen, H. Izadpanah, C. Lin, M. Iqbal, L. Florez, and J. Harbison, J. IEEE Photon. Technol. Lett. 3, 863 (1991).
[CrossRef]

Von Lehmen, A. C.

T. C. Banwell, A. C. Von Lehmen, and R. R. Cordell, IEEE J. Quantum Electron. 29, 635 (1993).
[CrossRef]

Wang, Y.

G. Hasnain, K. Tai, L. Yang, Y. Wang, R. Fischer, J. D. Wynn, B. Weir, N. Dutta, and A. Cho, IEEE J. Quantum Electron. 27, 1377 (1991).
[CrossRef]

Weir, B.

G. Hasnain, K. Tai, L. Yang, Y. Wang, R. Fischer, J. D. Wynn, B. Weir, N. Dutta, and A. Cho, IEEE J. Quantum Electron. 27, 1377 (1991).
[CrossRef]

Wu, M. C.

Wynn, J. D.

G. Hasnain, K. Tai, L. Yang, Y. Wang, R. Fischer, J. D. Wynn, B. Weir, N. Dutta, and A. Cho, IEEE J. Quantum Electron. 27, 1377 (1991).
[CrossRef]

Yamamoto, T.

Yang, L.

G. Hasnain, K. Tai, L. Yang, Y. Wang, R. Fischer, J. D. Wynn, B. Weir, N. Dutta, and A. Cho, IEEE J. Quantum Electron. 27, 1377 (1991).
[CrossRef]

Yang, W.

Zhao, X.

Zvyagin, A. V.

Appl. Opt. (4)

IEEE J. Quantum Electron. (4)

G. Hasnain, K. Tai, L. Yang, Y. Wang, R. Fischer, J. D. Wynn, B. Weir, N. Dutta, and A. Cho, IEEE J. Quantum Electron. 27, 1377 (1991).
[CrossRef]

C. Chen, P. O. Leisher, A. A. Allerman, K. M. Geib, and K. D. Choquette, IEEE J. Quantum Electron. 42, 1078 (2006).
[CrossRef]

R. Lang, IEEE J. Quantum Electron. 18, 976 (1982).
[CrossRef]

T. C. Banwell, A. C. Von Lehmen, and R. R. Cordell, IEEE J. Quantum Electron. 29, 635 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Osinski and W. Nakwaski, IEEE J. Sel. Top. Quantum Electron. 1, 681 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

K. Sato and M. Murakami, IEEE Photon. Technol. Lett. 3, 501 (1991).
[CrossRef]

G. Heise, IEEE Photon. Technol. Lett. 2, 97 (1990).
[CrossRef]

S. Nakagawa, S.-Y. Hu, D. Louderback, and L. A. Coldren, IEEE Photon. Technol. Lett. 12, 612 (2000).
[CrossRef]

J. IEEE Photon. Technol. Lett. (1)

M. Maeda, C. Chang-Hasnain, A. Von Lehmen, H. Izadpanah, C. Lin, M. Iqbal, L. Florez, and J. Harbison, J. IEEE Photon. Technol. Lett. 3, 863 (1991).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup for measuring velocity on a rotating disk. The disk is tilted around the vertical axis by 5° to produce a small velocity component in the direction of the laser beam.

Fig. 2.
Fig. 2.

SNR of central laser (Channel 12) versus injection current with different levels of current in neighboring lasers. The current in the neighboring lasers are all biased at the same current while the current of the central laser is varied. (circles-single channel, squares-multichannel 2 mA, up triangles-multichannel 5 mA, down triangles-multichannel 8 mA, diamonds-multichannel 10 mA).

Fig. 3.
Fig. 3.

Close-up photo of the array and thermal images for the different separation distances used for the experiments in Fig. 4. (a) Photo, (b) 660 μm spacing, (c) 440 μm spacing, and (d) 200 μm spacing. Channel 1 is located at the left hand side of the images.

Fig. 4.
Fig. 4.

SNR of central laser (Channel 12) versus injection current with simultaneous operation of six neighboring lasers biased at 10 mA. There is an equal separation distance between lasers with the separation distance varying for different experiments. (circles-660 μm spacing, squares-440 μm spacing, triangles-200 μm spacing).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Fit(f)=a+bfc+dexp((ffDg)2),
λ(T,I)=844.1+0.063T+0.066I+0.00029TI+0.0128I2,

Metrics