Abstract

A class of partially coherent beams with a nonuniformly cosine-Gaussian (NUCG) correlated function is introduced. The evolution behavior of scalar beams produced by these families of sources in free space and isotropic random media are investigated. It is shown that such light fields with NUCG correlated function propagating in free space and turbulent atmosphere have self-focusing effects and laterally shifted intensity maxima. The new source employs cosine function for modeling of the source degree of coherence, which can adjust the self-focusing focal length, the shift of intensity center, and the intensity profile.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge, 1995).
  2. S. Sahin and O. Korotkova, Opt. Lett. 37, 2970 (2012).
    [CrossRef]
  3. H. Lajunen and T. Saastamoinen, Opt. Lett. 36, 4104 (2011).
    [CrossRef]
  4. Z. Tong and O. Korotkova, Opt. Lett. 37, 3240 (2012).
    [CrossRef]
  5. Z. Mei and O. Korotkova, Opt. Lett. 38, 2578 (2013).
    [CrossRef]
  6. Z. Mei, E. Shchepakina, and O. Korotkova, Opt. Express 21, 17512 (2013).
    [CrossRef]
  7. F. Gori and M. Santarsiero, Opt. Lett. 32, 3531 (2007).
    [CrossRef]
  8. E. Shchepakina and O. Korotkova, Opt. Express 18, 10650 (2010).
    [CrossRef]
  9. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Opt. Eng. 47, 026003 (2008).
    [CrossRef]
  10. O. Korotkova, S. Avramov-Zamurovic, C. Nelson, and R. Malek-Madani, Proc. SPIE 8238, 82380J (2012).
    [CrossRef]
  11. C. Macías-Romero, R. Lim, M. R. Foreman, and P. Török, Opt. Lett. 36, 1638 (2011).
    [CrossRef]

2013 (2)

2012 (3)

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, and R. Malek-Madani, Proc. SPIE 8238, 82380J (2012).
[CrossRef]

S. Sahin and O. Korotkova, Opt. Lett. 37, 2970 (2012).
[CrossRef]

Z. Tong and O. Korotkova, Opt. Lett. 37, 3240 (2012).
[CrossRef]

2011 (2)

2010 (1)

2008 (1)

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Opt. Eng. 47, 026003 (2008).
[CrossRef]

2007 (1)

Andrews, L. C.

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Opt. Eng. 47, 026003 (2008).
[CrossRef]

Avramov-Zamurovic, S.

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, and R. Malek-Madani, Proc. SPIE 8238, 82380J (2012).
[CrossRef]

Ferrero, V.

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Opt. Eng. 47, 026003 (2008).
[CrossRef]

Foreman, M. R.

Gori, F.

Korotkova, O.

Lajunen, H.

Lim, R.

Macías-Romero, C.

Malek-Madani, R.

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, and R. Malek-Madani, Proc. SPIE 8238, 82380J (2012).
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge, 1995).

Mei, Z.

Nelson, C.

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, and R. Malek-Madani, Proc. SPIE 8238, 82380J (2012).
[CrossRef]

Phillips, R. L.

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Opt. Eng. 47, 026003 (2008).
[CrossRef]

Saastamoinen, T.

Sahin, S.

Santarsiero, M.

Shchepakina, E.

Tong, Z.

Török, P.

Toselli, I.

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Opt. Eng. 47, 026003 (2008).
[CrossRef]

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Illustration of the degree of coherence calculated from Eq. (8) for several values of parameter b, (b) b=0, (c) b=0.5, and (d) b=1. The corresponding result of GSM light field is also given in the (a).

Fig. 2.
Fig. 2.

Illustration of the CSD corresponding to the degree of coherence in Fig. 1 calculated from Eq. (7).

Fig. 3.
Fig. 3.

Evolution of the spectral intensity S of the NUCG beams with several values of parameter b on propagation in free space (a) b=0, (b) b=0.5, and (c) b=1.

Fig. 4.
Fig. 4.

Evolution of the spectral intensity S of the NUCG beams with several values of parameter b on propagation in atmospheric turbulence (a) b=0, (b) b=0.5, and (c) b=1.

Fig. 5.
Fig. 5.

Shift of the intensity center of the beam on propagation in (a) free space and (b) atmospheric turbulence.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

W0(ρ1,ρ2)=p(v)H0*(ρ1,v)H0(ρ2,v)dv,
H0(ρ,v)=τ(ρ)exp[ivg(ρ)],
W0(ρ1,ρ2)=τ*(ρ1)τ(ρ2)p[g(ρ1)g(ρ2)).
W0(ρ1,ρ2)=exp[ρ12+ρ222σ02]×exp{[(ρ1ρ0)2(ρ2ρ0)2]2δ4},
p(v)=2(πa2)1/2cosh(2πbv/a)exp(v2/a2πb2),
H0(ρ,v)=exp(ρ22σ02)exp[ik(ρρ0)2v],
W0(ρ1,ρ2)=exp(ρ12+ρ222σ02)μ(ρ1,ρ2),
μ(ρ1,ρ2)=cos{2bπ(ρ1ρ0)2(ρ2ρ0)2δ2}×exp{[(ρ1ρ0)2(ρ2ρ0)2]2δ4}.
W(r1,r2)=k24π2z2W0(ρ1,ρ2)K(ρ1,ρ1,ρ2,ρ2,z)×d2ρ1d2ρ2,
K(ρ1,ρ1,ρ2,ρ2,z)=exp[ik(ρ1ρ1)2(ρ2ρ2)22z]×exp{(π2k2z/3)[(ρ1ρ2)2+(ρ1ρ2)(ρ1ρ2)+(ρ1ρ2)2]0κ3Φ(κ)dκ},
Φn(κ)=A(α)C˜n2exp[(κ2/κm2)]/(κ2+κ02)α/2,0κ<,3<α<4,
W(r1,r2)=k24π2z2p(v)H*(ρ1,v,z)H(ρ2,v,z)dv,
H*(ρ1,v,z)H(ρ2,v,z)=H0*(ρ1,v)H(ρ2,v)×K(ρ1,ρ1,ρ2,ρ2,z)d2ρ1d2ρ2.
H*(ρ1,v,z)H(ρ2,v,z)=4π2σ02z2k2w2(v,z)×exp[k2σ022z2(ρ1ρ2)2]exp{1w2(v,z)×[12(ρ1+ρ2)+ikσ022z(2zv1)(ρ1ρ2)2vzρ0]2},
w2(v,z)=(zkσ0)2+σ02(2zv1)2+4π2z330κ3Φ(κ)dκ.
S(ρ,z)=(k2πz)2p(v)|H(ρ,v,z)|2dv.

Metrics