Abstract

We present efficient and robust Kerr-lens mode locking (KLM) of a diode-pumped Cr:LiSAF laser using a gain-matched output coupler (GMOC). An inexpensive, battery-powered 660 nm single-spatial-mode diode was used as the pump source. GMOC enhances the effective self-amplitude modulation depth by reducing the gain-filtering effect in broadband KLM operation to provide significant improvement in efficiency and robustness. Pulsing can be initiated without careful cavity alignment and is sustained for hours. 13 fs pulses with an average power of 25 mW have been generated using only 120 mW of pump power. The corresponding pulse energy and peak power is 200 pJ and 15 kW for the 126 MHz repetition rate cavity. Optical-to-optical conversion efficiency of the system is 21%, which represents an order of magnitude improvement in reported efficiencies for such diode-pumped ultrashort-pulse KLM Cr:LiSAF lasers. The obtainable pulse width is currently limited by the dispersion bandwidth of the available optics and can be potentially reduced to below 7 fs.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, and W. Sibbett, Opt. Lett. 16, 42 (1991).
  2. M. J. P. Dymott and A. I. Ferguson, Opt. Lett. 20, 1157 (1995).
    [CrossRef]
  3. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, Opt. Lett. 26, 373 (2001).
    [CrossRef]
  4. S. Uemeura and K. Torizuka, Opt. Lett. 24, 780 (1999).
    [CrossRef]
  5. M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, Opt. Lett. 34, 3056 (2009).
    [CrossRef]
  6. U. Demirbas, G. S. Petrich, D. Li, A. Sennaroglu, L. A. Kolodziejski, F. X. Kärtner, and J. G. Fujimoto, J. Opt. Soc. Am. B 28, 986 (2011).
    [CrossRef]
  7. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, J. Appl. Phys. 66, 1051 (1989).
    [CrossRef]
  8. U. Demirbas, S. Eggert, and A. Leitenstorfer, J. Opt. Soc. Am. B 29, 1894 (2012).
    [CrossRef]
  9. S. Uemura and K. Torizuka, Jpn. J. Appl. Phys. 39, 3472 (2000).
    [CrossRef]
  10. L. J. Chen, M. Y. Sander, and F. X. Kartner, Opt. Lett. 35, 2916 (2010).
    [CrossRef]
  11. N. Passilly, M. Fromager, K. Ait-Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, J. Opt. Soc. Am. B 21, 531 (2004).
    [CrossRef]
  12. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipocs, Opt. Lett. 22, 1716 (1997).
    [CrossRef]
  13. S. Uemura and K. Miyazaki, Opt. Commun. 138, 330 (1997).
    [CrossRef]
  14. A. Robertson, R. Knappe, and R. Wallenstein, Opt. Commun. 147, 294 (1998).
    [CrossRef]
  15. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, Opt. Lett. 36, 304 (2011).
    [CrossRef]
  16. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, Opt. Lett. 34, 3334 (2009).
    [CrossRef]
  17. C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus, Opt. Express 20, 13677 (2012).
    [CrossRef]
  18. P. W. Roth, D. Burns, and A. J. Kemp, Opt. Express 20, 20629 (2012).
    [CrossRef]

2012 (3)

2011 (2)

2010 (1)

2009 (2)

2004 (1)

2001 (1)

2000 (1)

S. Uemura and K. Torizuka, Jpn. J. Appl. Phys. 39, 3472 (2000).
[CrossRef]

1999 (1)

1998 (1)

A. Robertson, R. Knappe, and R. Wallenstein, Opt. Commun. 147, 294 (1998).
[CrossRef]

1997 (2)

1995 (1)

1991 (1)

1989 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, J. Appl. Phys. 66, 1051 (1989).
[CrossRef]

Ait-Ameur, K.

Angelow, G.

Backus, S.

Burns, D.

Cankaya, H.

Cassanho, A.

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, J. Appl. Phys. 66, 1051 (1989).
[CrossRef]

Chen, L. J.

Cizmeciyan, M. N.

Demirbas, U.

Doualan, J. L.

Durfee, C. G.

Dymott, M. J. P.

Eggert, S.

Ell, R.

Ferguson, A. I.

Fromager, M.

Fujimoto, J. G.

Garlick, J.

Hill, S.

Hirth, A.

Ippen, E. P.

Jenssen, H. P.

Kapteyn, H.

Kartner, F. X.

Kärtner, F. X.

Kean, P. N.

Kemp, A. J.

Kirchner, M.

Knappe, R.

A. Robertson, R. Knappe, and R. Wallenstein, Opt. Commun. 147, 294 (1998).
[CrossRef]

Kolodziejski, L. A.

Kurt, A.

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, J. Appl. Phys. 66, 1051 (1989).
[CrossRef]

Leitenstorfer, A.

Li, D.

Maclean, A. J.

Miyazaki, K.

S. Uemura and K. Miyazaki, Opt. Commun. 138, 330 (1997).
[CrossRef]

Moncorge, R.

Morgner, U.

Murnane, M.

Newkirk, H. W.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, J. Appl. Phys. 66, 1051 (1989).
[CrossRef]

Passilly, N.

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, J. Appl. Phys. 66, 1051 (1989).
[CrossRef]

Petrich, G. S.

Quarles, G.

Robertson, A.

A. Robertson, R. Knappe, and R. Wallenstein, Opt. Commun. 147, 294 (1998).
[CrossRef]

Roth, P. W.

Sander, M. Y.

Scheuer, V.

Sennaroglu, A.

Shea, K.

Sibbett, W.

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, J. Appl. Phys. 66, 1051 (1989).
[CrossRef]

Sorokin, E.

Sorokina, I. T.

Spence, D. E.

Squier, J. A.

Storz, T.

Szipocs, R.

Taft, G.

Torizuka, K.

S. Uemura and K. Torizuka, Jpn. J. Appl. Phys. 39, 3472 (2000).
[CrossRef]

S. Uemeura and K. Torizuka, Opt. Lett. 24, 780 (1999).
[CrossRef]

Tschudi, T.

Uemeura, S.

Uemura, S.

S. Uemura and K. Torizuka, Jpn. J. Appl. Phys. 39, 3472 (2000).
[CrossRef]

S. Uemura and K. Miyazaki, Opt. Commun. 138, 330 (1997).
[CrossRef]

Wallenstein, R.

A. Robertson, R. Knappe, and R. Wallenstein, Opt. Commun. 147, 294 (1998).
[CrossRef]

Wintner, E.

J. Appl. Phys. (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, J. Appl. Phys. 66, 1051 (1989).
[CrossRef]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys. (1)

S. Uemura and K. Torizuka, Jpn. J. Appl. Phys. 39, 3472 (2000).
[CrossRef]

Opt. Commun. (2)

S. Uemura and K. Miyazaki, Opt. Commun. 138, 330 (1997).
[CrossRef]

A. Robertson, R. Knappe, and R. Wallenstein, Opt. Commun. 147, 294 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (9)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the single-mode diode (SMD) pumped Kerr-lens mode-locked Cr:LiSAF laser with a GMOC. For dispersion compensation, DCM and a fused silica prism pair with a separation of 30 cm were used. Cavity arm lengths were 53 and 57 cm.

Fig. 2.
Fig. 2.

Gain profile of the Cr:LiSAF crystal and the designed transmission spectrum of the GMOC.

Fig. 3.
Fig. 3.

Measured variation of the Cr:LiSAF laser output power as a function of the incident pump power.

Fig. 4.
Fig. 4.

Measured output beam profiles for cw and cw mode-locked (fs) cases. Measured M2 values were around 1.25 and 1.1 for the cw and cw mode-locked cases, respectively.

Fig. 5.
Fig. 5.

Measured optical spectrum (left), calculated GDD profile of the cavity (left), interferometric autocorrelation (middle), and measured radio frequency spectrum (right) for the 13 fs long pulses with 25 mW average power and 126 MHz repetition rate. The data were taken at a pump power of 120 mW. The RF data were taken at 1 kHz resolution. In the middle graph, the solid curve is the envelope of the calculated autocorrelation by assuming a chirp-free pulse with the same spectral distribution.

Metrics