Abstract

Raman spectroscopy is an established technique for molecularly specific characterization of tissues. However, even with near-infrared (NIR) excitation, some tissues possess background autofluorescence, which can overwhelm Raman scattering. Here, we report collection of spectra from tissues with strong autofluorescence using a 1064 nm system with a high-throughput dispersive spectrometer and deep-cooled InGaAs array. Spectra collected at 1064 nm were compared with those collected at 785 nm in specimens from human breast, liver, and kidney. The results demonstrate superior performance at 1064 nm in the liver and kidney, where NIR autofluorescence is intense. The results indicate the feasibility of new biomedical applications for Raman spectroscopy at 1064 nm in tissues with strong autofluorescence.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription