Abstract

We examine a coherently-driven, dispersion-managed, passive Kerr fiber ring resonator and report, to the best of our knowledge, the first direct experimental observation of dispersive wave emission by temporal cavity solitons (CSs). Our observations are in excellent agreement with analytical predictions and they are fully corroborated by numerical simulations. These results lead to a better understanding of the behavior of temporal CSs under conditions where higher-order dispersion plays a significant role. Significantly, since temporal CSs manifest themselves in monolithic microresonators, our results are likely to explain the origins of spectral features observed in broadband Kerr frequency combs.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Universal mechanism for the binding of temporal cavity solitons

Yadong Wang, François Leo, Julien Fatome, Miro Erkintalo, Stuart G. Murdoch, and Stéphane Coen
Optica 4(8) 855-863 (2017)

Observations of spatiotemporal instabilities of temporal cavity solitons

Miles Anderson, François Leo, Stéphane Coen, Miro Erkintalo, and Stuart G. Murdoch
Optica 3(10) 1071-1074 (2016)

Writing and erasing of temporal cavity solitons by direct phase modulation of the cavity driving field

Jae K. Jang, Miro Erkintalo, Stuart G. Murdoch, and Stéphane Coen
Opt. Lett. 40(20) 4755-4758 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription