Abstract

We demonstrate simultaneous holographic optical trapping and optical image processing using a single-phase diffraction pattern displayed on a liquid crystal spatial light modulator (SLM). The ability of modern SLMs to provide multiorder phase shifts represents a degree of freedom that allows the calculation of diffraction patterns that act in precisely defined but different ways on light beams of different wavelengths. We exploit this property to calculate a single-phase hologram that shapes multiple optical traps at 785 nm while performing double-helix point spread function engineering at 532 nm. Both channels are independent to a large degree and have efficiencies of about 75% compared to the ideal diffractive patterns.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Binocular holographic three-dimensional display using a single spatial light modulator and a grating

Yanfeng Su, Zhijian Cai, Quan Liu, Lingyan Shi, Feng Zhou, and Jianhong Wu
J. Opt. Soc. Am. A 35(8) 1477-1486 (2018)

3D interferometric optical tweezers using a single spatial light modulator

Ethan Schonbrun, Rafael Piestun, Pamela Jordan, Jon Cooper, Kurt D Wulff, Johannes Courtial, and Miles Padgett
Opt. Express 13(10) 3777-3786 (2005)

Dual-view holographic three-dimensional display using a single spatial light modulator and a directional light-guide plate composed of pixelated gratings

Yanfeng Su, Zhijian Cai, Lingyan Shi, Feng Zhou, and Jianhong Wu
Appl. Opt. 58(25) 6912-6919 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. W. Sweeney and G. E. Sommargren, Appl. Opt. 34, 2469 (1995).
    [Crossref]
  2. S. Noach, A. Lewis, Y. Arieli, and N. Eisenberg, Appl. Opt. 35, 3635 (1996).
    [Crossref]
  3. A. Jesacher, S. Bernet, and M. Ritsch-Marte, Opt. Express22, 20530 (2014).
  4. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, Opt. Express 13, 689 (2005).
    [Crossref]
  5. R. Di Leonardo, F. Ianni, and G. Ruocco, Opt. Express 15, 1913 (2007).
    [Crossref]
  6. S. Pavani and R. Piestun, Opt. Express 16, 22048 (2008).
    [Crossref]
  7. S. Prasad, Opt. Lett. 38, 585 (2013).
    [Crossref]
  8. D. B. Conkey, R. P. Trivedi, S. Pavani, I. I. Smalyukh, and R. Piestun, Opt. Express 19, 3835 (2011).
    [Crossref]
  9. M. Persson, D. Engström, and M. Goksör, Opt. Express 20, 22334 (2012).
    [Crossref]

2013 (1)

2012 (1)

2011 (1)

2008 (1)

2007 (1)

2005 (1)

1996 (1)

1995 (1)

Arieli, Y.

Bernet, S.

S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, Opt. Express 13, 689 (2005).
[Crossref]

A. Jesacher, S. Bernet, and M. Ritsch-Marte, Opt. Express22, 20530 (2014).

Conkey, D. B.

Di Leonardo, R.

Eisenberg, N.

Engström, D.

Fürhapter, S.

Goksör, M.

Ianni, F.

Jesacher, A.

S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, Opt. Express 13, 689 (2005).
[Crossref]

A. Jesacher, S. Bernet, and M. Ritsch-Marte, Opt. Express22, 20530 (2014).

Lewis, A.

Noach, S.

Pavani, S.

Persson, M.

Piestun, R.

Prasad, S.

Ritsch-Marte, M.

S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, Opt. Express 13, 689 (2005).
[Crossref]

A. Jesacher, S. Bernet, and M. Ritsch-Marte, Opt. Express22, 20530 (2014).

Ruocco, G.

Smalyukh, I. I.

Sommargren, G. E.

Sweeney, D. W.

Trivedi, R. P.

Supplementary Material (2)

» Media 1: AVI (2743 KB)     
» Media 2: AVI (8105 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Principle of encoding different information for two wavelengths within a single diffraction pattern. For each pixel, the SLM phase vector is chosen to be as close as possible to one of the six possible target phase vectors.
Fig. 2.
Fig. 2. Trapping and an imaging hologram are combined to a single DP. Top row: ideal design patterns. Middle: combined pattern; this pattern exploits the full phase-modulation range of the SLM. The two upper values of the phase-scale bar correspond to 532 and 785 nm. Bottom row: effective phase patterns as “seen” by the readout wavelengths 532 and 785 nm. These have again been wrapped to 2 π for the two wavelengths, respectively.
Fig. 3.
Fig. 3. Experimental setup for simultaneous holographic optical trapping and optical image processing. Both light paths use the SLM, which performs different wavefront manipulations according to the wavelength.
Fig. 4.
Fig. 4. (a) Combined optical trapping and double-helix PSF engineering. (b) Combined trapping and widefield imaging. It is possible to toggle between the imaging modes by exchanging the holograms on the SLM (Media 1).
Fig. 5.
Fig. 5. Performance comparison of the combined imaging and trapping hologram with the respective ideal design patterns. (a) and (b) show the four trapping foci shaped by the ideal trapping hologram and the combined hologram at 785 nm. The latter has a relative efficiency of 78% compared to the ideal trapping pattern. (c) and (d) show five double-helix imaged beads. Each bead appears as two bright lobes. Here the combined hologram has a relative efficiency of 75% compared to the ideal imaging pattern.
Fig. 6.
Fig. 6. Left: Combined trapping and spiral phase imaging of four polystyrene beads (Media 2). Right: combinations of spiral phase contrast imaging with four different configurations of optical traps were simulated. The respective (simulated) efficiencies for trapping (red) and imaging are stated above the trap patterns.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η λ = | 1 N n N e i Φ err , λ ( n ) | 2 .

Metrics