Abstract

We fabricate and experimentally demonstrate a hybrid structured Fabry–Perot interferometer (FPI) embedded in the middle of a fiber line for simultaneous measurement of axial strain and temperature. The FPI is composed of a silica-cavity cascaded to a spheroidal air-cavity, both of which are formed in a hollow annular core fiber (HACF). The fabrication process of the FPI includes only a fusion splice between a single-mode fiber and a HACF and several electrical arc discharges at the HACF near the splice point. Experimental results show that the strain and temperature sensitivities of the air-cavity can be 5.2 pm/με and 1.3 pm/C°, respectively, and those of the silica-cavity can be 1.1 pm/με and 13 pm/C°, respectively. The different sensitivities of silica-cavity and air-cavity to strain and temperature enable us to implement simultaneous sensing in strain and temperature.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, Opt. Express 16, 5764 (2008).
    [CrossRef]
  2. D. Wang, S. Wang, and P. Jia, Opt. Lett. 37, 2046 (2012).
    [CrossRef]
  3. W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, Rev. Sci. Instrum. 82, 076103 (2011).
    [CrossRef]
  4. E. Li, G. Peng, and X. Ding, Appl. Phys. Lett. 92, 101117 (2008).
    [CrossRef]
  5. Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, Opt. Lett. 32, 2662 (2007).
    [CrossRef]
  6. Z. L. Ran, Y. J. Rao, X. Liao, and H. Y. Deng, J. Lightwave Technol. 27, 3143 (2009).
    [CrossRef]
  7. D. W. Duan, Y. J. Rao, Y. S. Hou, and T. Zhu, Appl. Opt. 51, 1033 (2012).
    [CrossRef]
  8. S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, Opt. Lett. 39, 2121 (2014).
    [CrossRef]
  9. F. C. Favero, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, Opt. Lett. 36, 4191 (2011).
    [CrossRef]
  10. Y. Liu, S. Qu, and Y. Li, Opt. Lett. 38, 335 (2013).
    [CrossRef]
  11. H. Y. Choi, K. S. Park, S. J. Park, U. Paek, B. H. Lee, and E. S. Choi, Opt. Lett. 33, 2455 (2008).
    [CrossRef]
  12. Y. Zhang, H. Shibru, K. L. Cooper, and A. Wang, Opt. Lett. 30, 1021 (2005).
    [CrossRef]
  13. M. Tian, P. Lu, L. Chen, D. Liu, and M. Yang, IEEE Photon. Technol. Lett. 25, 1609 (2013).
    [CrossRef]
  14. Y. Gong, T. Zhao, Y. Rao, Y. Wu, and Y. Guo, Opt. Express 18, 15844 (2010).
    [CrossRef]
  15. D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Mileńko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, Q. Sun, H. Wei, W. Tong, and T. R. Woliński, IEEE Sens. J. 12, 1239 (2012).
    [CrossRef]
  16. H. Bae, D. Yun, H. Liu, D. A. Olson, and M. Yu, J. Lightwave Technol. 32, 1585 (2014).
    [CrossRef]
  17. S. Pevec and D. Donlagic, Appl. Opt. 51, 4536 (2012).
    [CrossRef]
  18. V. Bhatia, D. Campbell, R. O. Claus, and A. M. Vengsarkar, Opt. Lett. 22, 648 (1997).
    [CrossRef]
  19. E. J. Friebele, M. A. Putnam, H. J. Patrick, A. D. Kersey, A. S. Greenblatt, G. P. Ruthven, M. H. Krim, and K. S. Gottschalck, Opt. Lett. 23, 222 (1998).
    [CrossRef]
  20. B. Guan, H. Tam, S. Ho, W. Chung, and X. Dong, Electron. Lett. 36, 1018 (2000).
    [CrossRef]

2014 (2)

2013 (2)

Y. Liu, S. Qu, and Y. Li, Opt. Lett. 38, 335 (2013).
[CrossRef]

M. Tian, P. Lu, L. Chen, D. Liu, and M. Yang, IEEE Photon. Technol. Lett. 25, 1609 (2013).
[CrossRef]

2012 (4)

S. Pevec and D. Donlagic, Appl. Opt. 51, 4536 (2012).
[CrossRef]

D. W. Duan, Y. J. Rao, Y. S. Hou, and T. Zhu, Appl. Opt. 51, 1033 (2012).
[CrossRef]

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Mileńko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, Q. Sun, H. Wei, W. Tong, and T. R. Woliński, IEEE Sens. J. 12, 1239 (2012).
[CrossRef]

D. Wang, S. Wang, and P. Jia, Opt. Lett. 37, 2046 (2012).
[CrossRef]

2011 (2)

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, Rev. Sci. Instrum. 82, 076103 (2011).
[CrossRef]

F. C. Favero, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, Opt. Lett. 36, 4191 (2011).
[CrossRef]

2010 (1)

2009 (1)

2008 (3)

2007 (1)

2005 (1)

2000 (1)

B. Guan, H. Tam, S. Ho, W. Chung, and X. Dong, Electron. Lett. 36, 1018 (2000).
[CrossRef]

1998 (1)

1997 (1)

Bae, H.

Bang, O.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, Rev. Sci. Instrum. 82, 076103 (2011).
[CrossRef]

Bhatia, V.

Bouwmans, G.

Campbell, D.

Chen, L.

M. Tian, P. Lu, L. Chen, D. Liu, and M. Yang, IEEE Photon. Technol. Lett. 25, 1609 (2013).
[CrossRef]

Chen, Z.

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Mileńko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, Q. Sun, H. Wei, W. Tong, and T. R. Woliński, IEEE Sens. J. 12, 1239 (2012).
[CrossRef]

Choi, E. S.

Choi, H. Y.

Chung, W.

B. Guan, H. Tam, S. Ho, W. Chung, and X. Dong, Electron. Lett. 36, 1018 (2000).
[CrossRef]

Claus, R. O.

Cooper, K. L.

Deng, H. Y.

Ding, X.

E. Li, G. Peng, and X. Ding, Appl. Phys. Lett. 92, 101117 (2008).
[CrossRef]

Dong, X.

B. Guan, H. Tam, S. Ho, W. Chung, and X. Dong, Electron. Lett. 36, 1018 (2000).
[CrossRef]

Donlagic, D.

Duan, D. W.

Favero, F. C.

Finazzi, V.

Friebele, E. J.

Gong, Y.

Gottschalck, K. S.

Greenblatt, A. S.

Guan, B.

B. Guan, H. Tam, S. Ho, W. Chung, and X. Dong, Electron. Lett. 36, 1018 (2000).
[CrossRef]

Guo, Y.

Han, Y.

Ho, S.

B. Guan, H. Tam, S. Ho, W. Chung, and X. Dong, Electron. Lett. 36, 1018 (2000).
[CrossRef]

Hou, Y. S.

Hu, D. J. J.

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Mileńko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, Q. Sun, H. Wei, W. Tong, and T. R. Woliński, IEEE Sens. J. 12, 1239 (2012).
[CrossRef]

Jia, P.

Jiang, M.

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Mileńko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, Q. Sun, H. Wei, W. Tong, and T. R. Woliński, IEEE Sens. J. 12, 1239 (2012).
[CrossRef]

Kersey, A. D.

Krim, M. H.

Lee, B. H.

Li, E.

E. Li, G. Peng, and X. Ding, Appl. Phys. Lett. 92, 101117 (2008).
[CrossRef]

Li, Y.

Li, Z.

Liao, C.

Liao, X.

Lim, J. L.

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Mileńko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, Q. Sun, H. Wei, W. Tong, and T. R. Woliński, IEEE Sens. J. 12, 1239 (2012).
[CrossRef]

Liu, D.

M. Tian, P. Lu, L. Chen, D. Liu, and M. Yang, IEEE Photon. Technol. Lett. 25, 1609 (2013).
[CrossRef]

Liu, H.

Liu, S.

Liu, Y.

Lu, P.

M. Tian, P. Lu, L. Chen, D. Liu, and M. Yang, IEEE Photon. Technol. Lett. 25, 1609 (2013).
[CrossRef]

Luan, F.

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Mileńko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, Q. Sun, H. Wei, W. Tong, and T. R. Woliński, IEEE Sens. J. 12, 1239 (2012).
[CrossRef]

Milenko, K. B.

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Mileńko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, Q. Sun, H. Wei, W. Tong, and T. R. Woliński, IEEE Sens. J. 12, 1239 (2012).
[CrossRef]

Olson, D. A.

Paek, U.

Park, K. S.

Park, S. J.

Patrick, H. J.

Peng, G.

E. Li, G. Peng, and X. Ding, Appl. Phys. Lett. 92, 101117 (2008).
[CrossRef]

Petersen, D. H.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, Rev. Sci. Instrum. 82, 076103 (2011).
[CrossRef]

Pevec, S.

Pruneri, V.

Putnam, M. A.

Qu, S.

Ran, Z. L.

Rao, Y.

Rao, Y. J.

Ruthven, G. P.

Savenko, A.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, Rev. Sci. Instrum. 82, 076103 (2011).
[CrossRef]

Shibru, H.

Shum, P. P.

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Mileńko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, Q. Sun, H. Wei, W. Tong, and T. R. Woliński, IEEE Sens. J. 12, 1239 (2012).
[CrossRef]

Sun, Q.

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Mileńko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, Q. Sun, H. Wei, W. Tong, and T. R. Woliński, IEEE Sens. J. 12, 1239 (2012).
[CrossRef]

Tam, H.

B. Guan, H. Tam, S. Ho, W. Chung, and X. Dong, Electron. Lett. 36, 1018 (2000).
[CrossRef]

Tang, J.

Tian, M.

M. Tian, P. Lu, L. Chen, D. Liu, and M. Yang, IEEE Photon. Technol. Lett. 25, 1609 (2013).
[CrossRef]

Tong, W.

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Mileńko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, Q. Sun, H. Wei, W. Tong, and T. R. Woliński, IEEE Sens. J. 12, 1239 (2012).
[CrossRef]

Tsai, H. L.

Vengsarkar, A. M.

Villatoro, J.

Wang, A.

Wang, D.

Wang, F.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, Rev. Sci. Instrum. 82, 076103 (2011).
[CrossRef]

Wang, G.

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, Opt. Lett. 39, 2121 (2014).
[CrossRef]

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Mileńko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, Q. Sun, H. Wei, W. Tong, and T. R. Woliński, IEEE Sens. J. 12, 1239 (2012).
[CrossRef]

Wang, Q.

Wang, S.

Wang, Y.

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, Opt. Lett. 39, 2121 (2014).
[CrossRef]

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Mileńko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, Q. Sun, H. Wei, W. Tong, and T. R. Woliński, IEEE Sens. J. 12, 1239 (2012).
[CrossRef]

Wei, H.

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Mileńko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, Q. Sun, H. Wei, W. Tong, and T. R. Woliński, IEEE Sens. J. 12, 1239 (2012).
[CrossRef]

Wei, T.

Wolinski, T. R.

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Mileńko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, Q. Sun, H. Wei, W. Tong, and T. R. Woliński, IEEE Sens. J. 12, 1239 (2012).
[CrossRef]

Wu, Y.

Xiao, H.

Yang, K.

Yang, M.

M. Tian, P. Lu, L. Chen, D. Liu, and M. Yang, IEEE Photon. Technol. Lett. 25, 1609 (2013).
[CrossRef]

Yang, X. C.

Yu, M.

Yuan, W.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, Rev. Sci. Instrum. 82, 076103 (2011).
[CrossRef]

Yun, D.

Zhang, T.

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Mileńko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, Q. Sun, H. Wei, W. Tong, and T. R. Woliński, IEEE Sens. J. 12, 1239 (2012).
[CrossRef]

Zhang, Y.

Zhao, J.

Zhao, T.

Zhong, X.

Zhou, J.

Zhu, T.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

E. Li, G. Peng, and X. Ding, Appl. Phys. Lett. 92, 101117 (2008).
[CrossRef]

Electron. Lett. (1)

B. Guan, H. Tam, S. Ho, W. Chung, and X. Dong, Electron. Lett. 36, 1018 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Tian, P. Lu, L. Chen, D. Liu, and M. Yang, IEEE Photon. Technol. Lett. 25, 1609 (2013).
[CrossRef]

IEEE Sens. J. (1)

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Mileńko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, Q. Sun, H. Wei, W. Tong, and T. R. Woliński, IEEE Sens. J. 12, 1239 (2012).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (2)

Opt. Lett. (9)

Rev. Sci. Instrum. (1)

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, Rev. Sci. Instrum. 82, 076103 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the hybrid FPI. L1 and L2 are lengths of the air-cavity and silica-cavity, respectively; I1, I2, and I3 are light intensities reflected by mirror 1, mirror 2, and mirror 3, respectively.

Fig. 2.
Fig. 2.

(a), (b), (c), and (d) Schematic of the fabrication process of the hybrid FPI at the SMF–HACF splice, arc 2 discharge, arc 3 discharge, and arc 4 discharge, respectively. (e), (f), (g), and (h) Corresponding images after the first, second, third, and fourth arc discharges, respectively.

Fig. 3.
Fig. 3.

(a) Interference spectrum of the hybrid FPI with air-cavity length L1 of 50 μm and silica-cavity length L2 of 392.5 μm. (b) Spatial frequency spectrum of the FPI.

Fig. 4.
Fig. 4.

Axial strain response of the hybrid FPIs with insets of interference spectra under different strains: (a) air-cavity-based FPIs; (b) silica-cavity-based FPIs.

Fig. 5.
Fig. 5.

Temperature response of the hybrid FPI with insets of interference spectra under different temperatures: (a) air-cavity-based FPIs; (b) silica-cavity-based FPIs.

Tables (2)

Tables Icon

Table 1. Parameters of Discharges at Different Steps

Tables Icon

Table 2. Geometric Parameters of the Three Hybrid FPIs

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I=I1+I2+I3+2I1I2cos(ϕ12)+2I2I3cos(ϕ23)+2I1I3cos(ϕ13),
[ΔεΔT]=[k11k12k21k22][ΔλairΔλsilica],

Metrics