Abstract

The Gravity Recovery and Climate Experiment Follow-On mission will use a phase-locked loop to track changes in the phase of an optical signal that has been transmitted hundreds of kilometers between two spacecraft. Beam diffraction significantly reduces the received signal power, making it difficult to track, as the phase-locked loop is more susceptible to cycle slips. The lowest reported weak-light phase locking is at 40 fW with a cycle slip rate of 1 cycle per second. By selecting a phase-locked loop bandwidth that minimized the signal variance due to shot noise and laser phase fluctuations, a 30 fW signal has been tracked with a cycle slip rate less than 0.01 cycles per second. This is tracking at a power 25% lower with a 100-fold improvement in the cycle slip rate. This capability will enable a new class of missions, opening up new opportunities for space-based interferometry.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Cycle-slip-less low-complexity phase recovery algorithm for coherent optical receivers

Valery Nobl Rozental, Deming Kong, Benjamin Foo, Bill Corcoran, and Arthur James Lowery
Opt. Lett. 42(18) 3554-3557 (2017)

Trade-off between linewidth and slip rate in a mode-locked laser model

Richard O. Moore
Opt. Lett. 39(10) 3042-3045 (2014)

Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network

C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, A. Mura, and A. Godone
Opt. Lett. 39(5) 1177-1180 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription