Abstract

A double-nanospike As2S3–silica hybrid waveguide structure is reported. The structure comprises nanotapers at input and output ends of a step-index waveguide with a subwavelength core (1 μm in diameter), with the aim of increasing the in-coupling and out-coupling efficiency. The design of the input nanospike is numerically optimized to match both the diameter and divergence of the input beam, resulting in efficient excitation of the fundamental mode of the waveguide. The output nanospike is introduced to reduce the output beam divergence and the strong endface Fresnel reflection. The insertion loss of the waveguide is measured to be 2dB at 1550 nm in the case of free-space in-coupling, which is 7dB lower than the previously reported single-nanospike waveguide. By pumping a 3-mm-long waveguide at 1550 nm using a 60-fs fiber laser, an octave-spanning supercontinuum (from 0.8 to beyond 2.5 μm) is generated at 38 pJ input energy.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, Opt. Express 19, 21003 (2011).
    [CrossRef]
  2. N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. St. J. Russell, Opt. Express 21, 10969 (2013).
    [CrossRef]
  3. K. F. Lee, N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, M. E. Fermann, P. St. J. Russell, and I. Hartl, Opt. Lett. 39, 2056 (2014).
    [CrossRef]
  4. Y. Yi, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D. Y. Choi, S. Madden, and B. Luther-Davies, Opt. Mater. Express 3, 1075 (2013).
    [CrossRef]
  5. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, Opt. Express 16, 14938 (2008).
    [CrossRef]
  6. C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, Opt. Lett. 38, 2865 (2013).
    [CrossRef]
  7. S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, Opt. Lett. 37, 4639 (2012).
    [CrossRef]
  8. M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, Opt. Lett. 39, 2052 (2014).
    [CrossRef]
  9. R. Ahmad, M. Rochette, and C. Baker, Opt. Lett. 36, 2886 (2011).
    [CrossRef]
  10. D. Pudo, E. C. Mägi, and B. J. Eggleton, Opt. Express 14, 3763 (2006).
    [CrossRef]
  11. M. Asobe, Opt. Fiber Technol. 3, 142 (1997).
    [CrossRef]
  12. V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, Opt. Express 15, 9205 (2007).
    [CrossRef]
  13. V. R. Almeida, R. R. Panepucci, and M. Lipson, Opt. Lett. 28, 1302 (2003).
    [CrossRef]
  14. S. Madden, Z. Jin, D. Choi, S. Debbarma, D. Bulla, and B. Luther-Davies, Opt. Express 21, 3582 (2013).
    [CrossRef]
  15. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, 1983).
  16. J. C. Travers, M. H. Frosz, and J. M. Dudley, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010), Chap. 3.
  17. G. Genty, P. Kinsler, B. Kibler, and J. M. Dudley, Opt. Express 15, 5382 (2007).
    [CrossRef]

2014 (2)

2013 (4)

2012 (1)

2011 (2)

2008 (1)

2007 (2)

2006 (1)

2003 (1)

1997 (1)

M. Asobe, Opt. Fiber Technol. 3, 142 (1997).
[CrossRef]

Abouraddy, A. F.

Ahmad, R.

Almeida, V. R.

Asobe, M.

M. Asobe, Opt. Fiber Technol. 3, 142 (1997).
[CrossRef]

Baker, C.

Baker, N. J.

Bernier, M.

Bulla, D.

Byer, R. L.

Chang, W.

Choi, D.

Choi, D. Y.

Coulombier, Q.

Debbarma, S.

Delfyett, P. J.

Dudley, J. M.

G. Genty, P. Kinsler, B. Kibler, and J. M. Dudley, Opt. Express 15, 5382 (2007).
[CrossRef]

J. C. Travers, M. H. Frosz, and J. M. Dudley, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010), Chap. 3.

Eggleton, B. J.

El-Amraoui, M.

Fermann, M. E.

Finsterbusch, K.

Fortin, V.

Frosz, M. H.

J. C. Travers, M. H. Frosz, and J. M. Dudley, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010), Chap. 3.

Fu, L.

Gai, X.

Genty, G.

Granzow, N.

Hartl, I.

Jin, Z.

Kibler, B.

Kinsler, P.

Lamont, M. R. E.

Lee, K. F.

Leindecker, N.

Lipson, M.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, 1983).

Luther-Davies, B.

Ma, P.

Madden, S.

Mägi, E. C.

Marandi, A.

Marquez, M. P.

Messaddeq, Y.

Moss, D. J.

Nguyen, D.

Nguyen, H. C.

Panepucci, R. R.

Piracha, M. U.

Pudo, D.

Rochette, M.

Rudy, C. W.

Russell, P. St. J.

Schmidt, M. A.

Schunemann, P. G.

Shabahang, S.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, 1983).

Stark, S. P.

Ta’eed, V. G.

Tao, G.

Toupin, P.

Travers, J. C.

J. C. Travers, M. H. Frosz, and J. M. Dudley, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010), Chap. 3.

Troles, J.

Tverjanovich, A. S.

Vallée, R.

Vodopyanov, K. L.

Wang, L.

Wang, R.

Wang, T.

Wondraczek, L.

Yang, Z.

Yi, Y.

Opt. Express (7)

Opt. Fiber Technol. (1)

M. Asobe, Opt. Fiber Technol. 3, 142 (1997).
[CrossRef]

Opt. Lett. (6)

Opt. Mater. Express (1)

Other (2)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, 1983).

J. C. Travers, M. H. Frosz, and J. M. Dudley, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic of the double-NS As2S3–silica step-index waveguide. (b) Optical micrographs and measured diameter profiles of each NS. The inset shows the scanning electron microscope (SEM) image of the NS1 tip.

Fig. 2.
Fig. 2.

Modified pressure-assisted melt-filling technique used for double-NS waveguide fabrication. (a) An As2S3 rod is inserted into a silica capillary, which is spliced with another capillary having a taper waist formed by local heating. (b) High temperature and pressure are applied to force As2S3 into the 1-μm channel of the left capillary. (c) The capillary is fused shut to form NS2; then a heat source is unidirectionally scanned to force As2S3 into the tip and to remove bubbles. (d) The sample is cleaved to form NS1.

Fig. 3.
Fig. 3.

Output near-field mode radius (upper plot) and beam divergence (lower plot) from the inverse taper as a function of spike length and tip width, calculated by FEM. The white dots shows the predicted output near-field mode radius and beam divergence from NS1, and the black horizontal lines indicate the input beam radius and divergence in our case.

Fig. 4.
Fig. 4.

(a) Measured near-field profiles and images (insets) when light is coupled out from NS1 (upper) and NS2 (lower) at 1550 nm wavelength. (b) Simulated and measured far-field intensity for untapered (upper) and inverse tapered (lower) cases. (c) FEM of the HE11 mode propagation over the last 6 μm towards output end for inverse tapered (left) and untapered (right) structures.

Fig. 5.
Fig. 5.

GVD of As2S3–silica step-index waveguide at different core diameters (labeled in μm beside the curves). The blue-dashed vertical line indicates the pump wavelength.

Fig. 6.
Fig. 6.

(a) Measured SC spectra generated by the double-NS waveguide at different pump pulse energies. The spectra below 1 μm wavelength were recorded by an OSA and above 1 μm by an FTIR. (b) Simulated SC spectrum at the output face and (c) spectral evolution along the 3-mm-long double-NS waveguide at 23 pJ (calculated after taking into account 60% in-coupling efficiency for 38-pJ total input energy) pump pulse energy. The gray-shaded portion indicates the region of NS1 and NS2.

Fig. 7.
Fig. 7.

Comparison of the measured SC spectra for three cases (for details see the text) at 38-pJ-input energy.

Metrics