Abstract

The Uller–Zenneck wave has been theoretically predicted to exist at the planar interface of two homogeneous dielectric materials of which only one must be dissipative. Experimental confirmation of this century-old prediction was obtained experimentally by exciting the Uller–Zenneck wave as a Floquet harmonic of nonzero order at the periodically corrugated interface of air and crystalline silicon in the 400-to-900-nm spectral regime. Application for intrachip optical interconnects at 850 nm appears promising.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Uller, Beiträge zur Theorie der Elektromagnetischen Strahlung, Ph.D. Thesis, Universität Rostock, Germany, 1903; Chap. XIV.
  2. J. Zenneck, Ann. Phys. (Leipzig) 23, 846 (1907).
  3. J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective; App. C (Elsevier, 2013).
  4. H. J. Simon, D. E. Mitchell, and J. G. Watson, Am. J. Phys. 43, 630 (1975).
    [CrossRef]
  5. U. Fano, J. Opt. Soc. Am. 31, 213 (1941).
    [CrossRef]
  6. W. H. Wise, Bell Syst. Tech. J. 16, 35 (1937).
    [CrossRef]
  7. J. R. Wait, IEEE Antennas Propag. Mag. 40(5), 7 (1998).
  8. A. V. Kukushkin, Phys. Usp. 52, 755 (2009).
    [CrossRef]
  9. M. Faryad and A. Lakhtakia, J. Opt. Soc. Am. B 31, 1706 (2014).
    [CrossRef]
  10. J. M. Lerner, Proc. SPIE 2532, 2 (1995).
    [CrossRef]
  11. L. Li, J. Opt. Soc. Am. A 10, 2581 (1993).
    [CrossRef]
  12. P. Lalanne and G. M. Morris, J. Opt. Soc. Am. A 13, 779 (1996).
    [CrossRef]
  13. http://refractiveindex.info/legacy/?group=CRYSTALS&material=Si&option=Palik&wavelength=6.18 (Accessed on May1, 2014).
  14. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Opt. Lett. 18, 528 (1993).
    [CrossRef]
  15. N. S. Kapany and J. J. Burke, Optical Waveguides (Academic, 1972).
  16. K. Iga, Jpn. J. Appl. Phys. 47, 1 (2008).
    [CrossRef]
  17. T. Kaneko, in Handbook of Optical Interconnects, S. Kawai, ed. (CRC Press, 2005).

2014 (1)

2009 (1)

A. V. Kukushkin, Phys. Usp. 52, 755 (2009).
[CrossRef]

2008 (1)

K. Iga, Jpn. J. Appl. Phys. 47, 1 (2008).
[CrossRef]

1998 (1)

J. R. Wait, IEEE Antennas Propag. Mag. 40(5), 7 (1998).

1996 (1)

1995 (1)

J. M. Lerner, Proc. SPIE 2532, 2 (1995).
[CrossRef]

1993 (2)

1975 (1)

H. J. Simon, D. E. Mitchell, and J. G. Watson, Am. J. Phys. 43, 630 (1975).
[CrossRef]

1941 (1)

1937 (1)

W. H. Wise, Bell Syst. Tech. J. 16, 35 (1937).
[CrossRef]

1907 (1)

J. Zenneck, Ann. Phys. (Leipzig) 23, 846 (1907).

Arjavalingam, G.

Brommer, K. D.

Burke, J. J.

N. S. Kapany and J. J. Burke, Optical Waveguides (Academic, 1972).

Fano, U.

Faryad, M.

Iga, K.

K. Iga, Jpn. J. Appl. Phys. 47, 1 (2008).
[CrossRef]

Joannopoulos, J. D.

Kaneko, T.

T. Kaneko, in Handbook of Optical Interconnects, S. Kawai, ed. (CRC Press, 2005).

Kapany, N. S.

N. S. Kapany and J. J. Burke, Optical Waveguides (Academic, 1972).

Kukushkin, A. V.

A. V. Kukushkin, Phys. Usp. 52, 755 (2009).
[CrossRef]

Lakhtakia, A.

M. Faryad and A. Lakhtakia, J. Opt. Soc. Am. B 31, 1706 (2014).
[CrossRef]

J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective; App. C (Elsevier, 2013).

Lalanne, P.

Lerner, J. M.

J. M. Lerner, Proc. SPIE 2532, 2 (1995).
[CrossRef]

Li, L.

Mackay, T. G.

J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective; App. C (Elsevier, 2013).

Meade, R. D.

Mitchell, D. E.

H. J. Simon, D. E. Mitchell, and J. G. Watson, Am. J. Phys. 43, 630 (1975).
[CrossRef]

Morris, G. M.

Polo, J. A.

J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective; App. C (Elsevier, 2013).

Rappe, A. M.

Robertson, W. M.

Simon, H. J.

H. J. Simon, D. E. Mitchell, and J. G. Watson, Am. J. Phys. 43, 630 (1975).
[CrossRef]

Uller, K.

K. Uller, Beiträge zur Theorie der Elektromagnetischen Strahlung, Ph.D. Thesis, Universität Rostock, Germany, 1903; Chap. XIV.

Wait, J. R.

J. R. Wait, IEEE Antennas Propag. Mag. 40(5), 7 (1998).

Watson, J. G.

H. J. Simon, D. E. Mitchell, and J. G. Watson, Am. J. Phys. 43, 630 (1975).
[CrossRef]

Wise, W. H.

W. H. Wise, Bell Syst. Tech. J. 16, 35 (1937).
[CrossRef]

Zenneck, J.

J. Zenneck, Ann. Phys. (Leipzig) 23, 846 (1907).

Am. J. Phys. (1)

H. J. Simon, D. E. Mitchell, and J. G. Watson, Am. J. Phys. 43, 630 (1975).
[CrossRef]

Ann. Phys. (Leipzig) (1)

J. Zenneck, Ann. Phys. (Leipzig) 23, 846 (1907).

Bell Syst. Tech. J. (1)

W. H. Wise, Bell Syst. Tech. J. 16, 35 (1937).
[CrossRef]

IEEE Antennas Propag. Mag. (1)

J. R. Wait, IEEE Antennas Propag. Mag. 40(5), 7 (1998).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

K. Iga, Jpn. J. Appl. Phys. 47, 1 (2008).
[CrossRef]

Opt. Lett. (1)

Phys. Usp. (1)

A. V. Kukushkin, Phys. Usp. 52, 755 (2009).
[CrossRef]

Proc. SPIE (1)

J. M. Lerner, Proc. SPIE 2532, 2 (1995).
[CrossRef]

Other (5)

http://refractiveindex.info/legacy/?group=CRYSTALS&material=Si&option=Palik&wavelength=6.18 (Accessed on May1, 2014).

N. S. Kapany and J. J. Burke, Optical Waveguides (Academic, 1972).

T. Kaneko, in Handbook of Optical Interconnects, S. Kawai, ed. (CRC Press, 2005).

J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective; App. C (Elsevier, 2013).

K. Uller, Beiträge zur Theorie der Elektromagnetischen Strahlung, Ph.D. Thesis, Universität Rostock, Germany, 1903; Chap. XIV.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic representation of the experimental configuration used to excite the Uller–Zenneck wave. (b) Cross-sectional and (c) top-view FESEM images of one replicate of the fabricated sample with periodic corrugations; L=600nm, ζ=5/12, and Lg=91nm.

Fig. 2.
Fig. 2.

Real and imaginary parts of the relative permittivity εs of crystalline silicon [13] used for computations.

Fig. 3.
Fig. 3.

Rp(0) of (a) the first and (b) the second replicates measured as functions of θ and λ0. (c) θCan(n) for n{±1,2} as functions of λ0.

Fig. 4.
Fig. 4.

(a) Rp(0) and (b) Ap calculated as functions of θ and λ0 for L=600nm, ζ=5/12, Lg=91nm, and Lm=27μm.

Fig. 5.
Fig. 5.

Same as Fig. 4 except for ζ=7/12, Lg=75nm, and Lm=24μm.

Fig. 6.
Fig. 6.

Spatial variation of the x-directed component Px(x,z) of the time-averaged Poynting vector when a p-polarized plane wave is incident on the grating with ζ=5/12, Lg=91nm, and Lm=500μm. (a) θ=9.6° and (b) θ=25°. For these computations, λ0=500nm and the amplitude of the incident electric field phasor equals 1Vm1.

Fig. 7.
Fig. 7.

(a) vp and (b) Δprop calculated as functions of λ0.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E(r)=ap(αairu^x+qu^zk0)exp[i(qxαairz)],z<0,
E(r)=bp(αsu^x+qu^zk0ns)exp[i(qx+αsz)],z>0,
q=k0εs/(εs+1).
Rp(0)=(IpIdark)/(IrefIdark).
sinθCan(n)=Re{εs/(εs+1)}nλ0/L.

Metrics