Abstract

A technique for measuring the radius of dielectric microcylinders with subdiffraction-limited precision is presented. Diffraction fringes arising from the dielectric cylinder are measured using conventional bright-field optical microscopy and compared with theory to deduce the radii. The technique has been demonstrated measuring the radii of the major-ampullate silks from Plebs eburnus spiders. Precision better than 50 nm is demonstrated, using a standard optical microscope with a numerical aperture of 0.6 for the objective. Accuracy was verified using scanning electron microscopy. This technique will facilitate rapid, precise measurement of dielectric microcylinder radii, enabling a new optical-microscopy-based measurement approach for these challenging micro-optics.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, Laser Photon. Rev. 7, 350 (2013).
    [CrossRef]
  2. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, Opt. Lett. 22, 1129 (1997).
    [CrossRef]
  3. V. R. Almeida, R. R. Panepucci, and M. Lipson, Opt. Lett. 28, 1302 (2003).
    [CrossRef]
  4. J. Villatoro and D. Monzón-Hernández, Opt. Express 13, 5087 (2005).
    [CrossRef]
  5. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, Opt. Lett. 30, 1237 (2005).
  6. G. Brambila, Opt. Fiber Technol. 16, 331 (2010).
    [CrossRef]
  7. U. Weidemann, K. Karapetyan, C. Dan, D. Pritzkau, W. Alt, S. Irsen, and D. Meschede, Opt. Express 18, 7693 (2010).
    [CrossRef]
  8. V. Grubsky and A. Savchenko, Opt. Express 13, 6798 (2005).
    [CrossRef]
  9. T. A. Birks, W. J. Wadsworth, and P. St. J. Russel, Opt. Lett. 25, 1415 (2000).
    [CrossRef]
  10. D. J. Little and D. M. Kane, Opt. Express 19, 19182 (2011).
    [CrossRef]
  11. D. J. Little and D. M. Kane, Opt. Lett. 36, 4098 (2011).
    [CrossRef]
  12. D. J. Little and D. M. Kane, Proc. SPIE 9130, 913009 (2014).
    [CrossRef]
  13. M. F. Ashby, L. J. Gibson, U. Wegst, and R. Olive, Proc. R. Soc. London A 450, 123 (1995).
    [CrossRef]
  14. J. M. Gosline, M. E. Demont, and M. W. Denny, Endeavour 10, 37 (1986).
    [CrossRef]
  15. N. Huby, V. Vié, A. Renault, S. Beaufils, T. Lefèvre, F. Pacquet-Mercier, M. Pézolet, and B. Bêche, Appl. Phys. Lett. 102, 123702 (2013).
    [CrossRef]
  16. F. Warken and H. Giessen, Opt. Lett. 29, 1727 (2004).
    [CrossRef]
  17. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley1998).

2014 (1)

D. J. Little and D. M. Kane, Proc. SPIE 9130, 913009 (2014).
[CrossRef]

2013 (2)

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, Laser Photon. Rev. 7, 350 (2013).
[CrossRef]

N. Huby, V. Vié, A. Renault, S. Beaufils, T. Lefèvre, F. Pacquet-Mercier, M. Pézolet, and B. Bêche, Appl. Phys. Lett. 102, 123702 (2013).
[CrossRef]

2011 (2)

2010 (2)

2005 (3)

2004 (1)

2003 (1)

2000 (1)

1997 (1)

1995 (1)

M. F. Ashby, L. J. Gibson, U. Wegst, and R. Olive, Proc. R. Soc. London A 450, 123 (1995).
[CrossRef]

1986 (1)

J. M. Gosline, M. E. Demont, and M. W. Denny, Endeavour 10, 37 (1986).
[CrossRef]

Almeida, V. R.

Alt, W.

Ashby, M. F.

M. F. Ashby, L. J. Gibson, U. Wegst, and R. Olive, Proc. R. Soc. London A 450, 123 (1995).
[CrossRef]

Beaufils, S.

N. Huby, V. Vié, A. Renault, S. Beaufils, T. Lefèvre, F. Pacquet-Mercier, M. Pézolet, and B. Bêche, Appl. Phys. Lett. 102, 123702 (2013).
[CrossRef]

Bêche, B.

N. Huby, V. Vié, A. Renault, S. Beaufils, T. Lefèvre, F. Pacquet-Mercier, M. Pézolet, and B. Bêche, Appl. Phys. Lett. 102, 123702 (2013).
[CrossRef]

Belal, M.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, Laser Photon. Rev. 7, 350 (2013).
[CrossRef]

Birks, T. A.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley1998).

Brambila, G.

G. Brambila, Opt. Fiber Technol. 16, 331 (2010).
[CrossRef]

Brambilla, G.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, Laser Photon. Rev. 7, 350 (2013).
[CrossRef]

Cheung, G.

Dan, C.

Demont, M. E.

J. M. Gosline, M. E. Demont, and M. W. Denny, Endeavour 10, 37 (1986).
[CrossRef]

Denny, M. W.

J. M. Gosline, M. E. Demont, and M. W. Denny, Endeavour 10, 37 (1986).
[CrossRef]

Ding, M.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, Laser Photon. Rev. 7, 350 (2013).
[CrossRef]

Gibson, L. J.

M. F. Ashby, L. J. Gibson, U. Wegst, and R. Olive, Proc. R. Soc. London A 450, 123 (1995).
[CrossRef]

Giessen, H.

Gosline, J. M.

J. M. Gosline, M. E. Demont, and M. W. Denny, Endeavour 10, 37 (1986).
[CrossRef]

Grubsky, V.

Huby, N.

N. Huby, V. Vié, A. Renault, S. Beaufils, T. Lefèvre, F. Pacquet-Mercier, M. Pézolet, and B. Bêche, Appl. Phys. Lett. 102, 123702 (2013).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley1998).

Irsen, S.

Ismaeel, R.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, Laser Photon. Rev. 7, 350 (2013).
[CrossRef]

Jacques, F.

Kane, D. M.

Karapetyan, K.

Knight, J. C.

Lee, T.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, Laser Photon. Rev. 7, 350 (2013).
[CrossRef]

Lefèvre, T.

N. Huby, V. Vié, A. Renault, S. Beaufils, T. Lefèvre, F. Pacquet-Mercier, M. Pézolet, and B. Bêche, Appl. Phys. Lett. 102, 123702 (2013).
[CrossRef]

Lipson, M.

Little, D. J.

Mansuripur, M.

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, Opt. Lett. 30, 1237 (2005).

Meschede, D.

Monzón-Hernández, D.

Olive, R.

M. F. Ashby, L. J. Gibson, U. Wegst, and R. Olive, Proc. R. Soc. London A 450, 123 (1995).
[CrossRef]

Pacquet-Mercier, F.

N. Huby, V. Vié, A. Renault, S. Beaufils, T. Lefèvre, F. Pacquet-Mercier, M. Pézolet, and B. Bêche, Appl. Phys. Lett. 102, 123702 (2013).
[CrossRef]

Panepucci, R. R.

Peyghambarian, N.

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, Opt. Lett. 30, 1237 (2005).

Pézolet, M.

N. Huby, V. Vié, A. Renault, S. Beaufils, T. Lefèvre, F. Pacquet-Mercier, M. Pézolet, and B. Bêche, Appl. Phys. Lett. 102, 123702 (2013).
[CrossRef]

Polynkin, A.

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, Opt. Lett. 30, 1237 (2005).

Polynkin, P.

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, Opt. Lett. 30, 1237 (2005).

Pritzkau, D.

Renault, A.

N. Huby, V. Vié, A. Renault, S. Beaufils, T. Lefèvre, F. Pacquet-Mercier, M. Pézolet, and B. Bêche, Appl. Phys. Lett. 102, 123702 (2013).
[CrossRef]

Russel, P. St. J.

Savchenko, A.

Vié, V.

N. Huby, V. Vié, A. Renault, S. Beaufils, T. Lefèvre, F. Pacquet-Mercier, M. Pézolet, and B. Bêche, Appl. Phys. Lett. 102, 123702 (2013).
[CrossRef]

Villatoro, J.

Wadsworth, W. J.

Warken, F.

Wegst, U.

M. F. Ashby, L. J. Gibson, U. Wegst, and R. Olive, Proc. R. Soc. London A 450, 123 (1995).
[CrossRef]

Weidemann, U.

Appl. Phys. Lett. (1)

N. Huby, V. Vié, A. Renault, S. Beaufils, T. Lefèvre, F. Pacquet-Mercier, M. Pézolet, and B. Bêche, Appl. Phys. Lett. 102, 123702 (2013).
[CrossRef]

Endeavour (1)

J. M. Gosline, M. E. Demont, and M. W. Denny, Endeavour 10, 37 (1986).
[CrossRef]

Laser Photon. Rev. (1)

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, Laser Photon. Rev. 7, 350 (2013).
[CrossRef]

Opt. Express (4)

Opt. Fiber Technol. (1)

G. Brambila, Opt. Fiber Technol. 16, 331 (2010).
[CrossRef]

Opt. Lett. (6)

Proc. R. Soc. London A (1)

M. F. Ashby, L. J. Gibson, U. Wegst, and R. Olive, Proc. R. Soc. London A 450, 123 (1995).
[CrossRef]

Proc. SPIE (1)

D. J. Little and D. M. Kane, Proc. SPIE 9130, 913009 (2014).
[CrossRef]

Other (1)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

(a) Calculated scattered field cross section from a cylinder of radius 720 nm, n=1.55, and λ=540nm. I0 denotes the irradiance of the illumination field. Maximum-irradiance diffraction fringes are indicated by arrows. (b) Separation of diffraction fringes as a function of radius (normalized by illumination wavelength) for a single cylinder at z=10, 15, and 20 μm. Vertical shaded regions indicate where measured values for Sd (horizontal dotted lines) intersect with the modeled curves at all three z-values and correspond to cylinder radii of 720±40nm and 1230±35nm (a/λ=1.33±0.08 and 2.28±0.07), respectively, for λ=540nm. (c) Observed scattered field from silk N=1, illumination NA=0.06, objective NA=0.6, and polarization parallel to silk. Measured Sd were 5.62±0.08μm, 6.39±0.08μm, and 7.49±0.08μm for z=10, 15, and 20 μm respectively.

Fig. 2.
Fig. 2.

SEM of a P. eburnus major ampullate silk (N=1), imaged with 6000× magnification, with the silk tilted slightly with respect to the focal plane. The measured radius of this silk was 670±70nm.

Tables (1)

Tables Icon

Table 1. Measured Cylinder Radii of P. eburnus Major Ampullate Silks

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Iimage(x,y)=Iobject(x,y)*A(x,y),

Metrics