Abstract

We report, for the first time to our knowledge, the demonstration of a graphene supercapacitor as a voltage-controlled saturable absorber for femtosecond pulse generation from a solid-state laser. By applying only a few volts of bias, the Fermi level of the device could be shifted to vary the insertion loss, while maintaining a sufficient level of saturable absorption to initiate mode-locked operation. The graphene supercapacitor was operated at bias voltages of 0.5–1V to generate sub-100 fs pulses at a pulse repetition rate of 4.51 MHz from a multipass-cavity Cr4+:forsterite laser operating at 1255 nm. The nonlinear optical response of the graphene supercapacitor was further investigated by using pump–probe spectroscopy.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photonics 4, 611 (2010).
    [CrossRef]
  2. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, Appl. Phys. Express 5, 032701 (2012).
    [CrossRef]
  3. Z. Sun, T. Hasan, and A. C. Ferrari, Physica E 44, 1082 (2012).
    [CrossRef]
  4. M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, Opt. Lett. 38, 341 (2013).
    [CrossRef]
  5. C. C. Lee, S. Suzuki, W. Xie, and T. R. Schibli, Opt. Express 20, 5264 (2012).
    [CrossRef]
  6. C. C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, Opt. Lett. 37, 3084 (2012).
    [CrossRef]
  7. E. O. Polat and C. Kocabas, Nano Lett. 13, 5851 (2013).
    [CrossRef]
  8. M.-M. Huang, Y. Jiang, P. Sasisanker, G. W. Driver, and H. Weingärtner, J. Chem. Eng. Data 56, 1494 (2011).
    [CrossRef]
  9. R. M. Lynden-Bell, A. I. Frolov, and M. V. Fedorov, Phys. Chem. Chem. Phys. 14, 2693 (2012).
    [CrossRef]
  10. L. M. Malard, K. F. Mak, A. H. C. Neto, N. M. R. Peres, and T. F. Heinz, New J. Phys. 15, 015009 (2013).
    [CrossRef]
  11. S. Ozharar, I. Baylam, M. N. Cizmeciyan, O. Balci, E. Pince, C. Kocabas, and A. Sennaroglu, J. Opt. Soc. Am. B 30, 1270 (2013).
    [CrossRef]
  12. A. Sennaroglu, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, IEEE J. Quantum Electron. 40, 519 (2004).
    [CrossRef]
  13. I. Baylam, S. Ozharar, H. Cankaya, S. Y. Choi, K. Kim, F. Rotermund, U. Griebner, V. Petrov, and A. Sennaroglu, Opt. Lett. 37, 3555 (2012).
    [CrossRef]

2013 (4)

2012 (6)

C. C. Lee, S. Suzuki, W. Xie, and T. R. Schibli, Opt. Express 20, 5264 (2012).
[CrossRef]

C. C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, Opt. Lett. 37, 3084 (2012).
[CrossRef]

I. Baylam, S. Ozharar, H. Cankaya, S. Y. Choi, K. Kim, F. Rotermund, U. Griebner, V. Petrov, and A. Sennaroglu, Opt. Lett. 37, 3555 (2012).
[CrossRef]

R. M. Lynden-Bell, A. I. Frolov, and M. V. Fedorov, Phys. Chem. Chem. Phys. 14, 2693 (2012).
[CrossRef]

H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, Appl. Phys. Express 5, 032701 (2012).
[CrossRef]

Z. Sun, T. Hasan, and A. C. Ferrari, Physica E 44, 1082 (2012).
[CrossRef]

2011 (1)

M.-M. Huang, Y. Jiang, P. Sasisanker, G. W. Driver, and H. Weingärtner, J. Chem. Eng. Data 56, 1494 (2011).
[CrossRef]

2010 (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photonics 4, 611 (2010).
[CrossRef]

2004 (1)

A. Sennaroglu, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, IEEE J. Quantum Electron. 40, 519 (2004).
[CrossRef]

Ahn, Y. H.

H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, Appl. Phys. Express 5, 032701 (2012).
[CrossRef]

Bae, S.

M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, Opt. Lett. 38, 341 (2013).
[CrossRef]

H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, Appl. Phys. Express 5, 032701 (2012).
[CrossRef]

Baek, H.

H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, Appl. Phys. Express 5, 032701 (2012).
[CrossRef]

Balci, O.

Baylam, I.

Bethge, J.

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photonics 4, 611 (2010).
[CrossRef]

Cankaya, H.

Choi, S. Y.

Cizmeciyan, M. N.

Driver, G. W.

M.-M. Huang, Y. Jiang, P. Sasisanker, G. W. Driver, and H. Weingärtner, J. Chem. Eng. Data 56, 1494 (2011).
[CrossRef]

Fedorov, M. V.

R. M. Lynden-Bell, A. I. Frolov, and M. V. Fedorov, Phys. Chem. Chem. Phys. 14, 2693 (2012).
[CrossRef]

Fermann, M. E.

Ferrari, A. C.

Z. Sun, T. Hasan, and A. C. Ferrari, Physica E 44, 1082 (2012).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photonics 4, 611 (2010).
[CrossRef]

Frolov, A. I.

R. M. Lynden-Bell, A. I. Frolov, and M. V. Fedorov, Phys. Chem. Chem. Phys. 14, 2693 (2012).
[CrossRef]

Fujimoto, J. G.

A. Sennaroglu, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, IEEE J. Quantum Electron. 40, 519 (2004).
[CrossRef]

Griebner, U.

Hartl, I.

Hasan, T.

Z. Sun, T. Hasan, and A. C. Ferrari, Physica E 44, 1082 (2012).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photonics 4, 611 (2010).
[CrossRef]

Heinz, T. F.

L. M. Malard, K. F. Mak, A. H. C. Neto, N. M. R. Peres, and T. F. Heinz, New J. Phys. 15, 015009 (2013).
[CrossRef]

Hong, B. H.

M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, Opt. Lett. 38, 341 (2013).
[CrossRef]

H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, Appl. Phys. Express 5, 032701 (2012).
[CrossRef]

Huang, M.-M.

M.-M. Huang, Y. Jiang, P. Sasisanker, G. W. Driver, and H. Weingärtner, J. Chem. Eng. Data 56, 1494 (2011).
[CrossRef]

Ippen, E. P.

A. Sennaroglu, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, IEEE J. Quantum Electron. 40, 519 (2004).
[CrossRef]

Jiang, Y.

M.-M. Huang, Y. Jiang, P. Sasisanker, G. W. Driver, and H. Weingärtner, J. Chem. Eng. Data 56, 1494 (2011).
[CrossRef]

Kim, J. W.

Kim, K.

Kocabas, C.

Kowalevicz, A. M.

A. Sennaroglu, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, IEEE J. Quantum Electron. 40, 519 (2004).
[CrossRef]

Lee, C. C.

Lee, H. W.

H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, Appl. Phys. Express 5, 032701 (2012).
[CrossRef]

Lynden-Bell, R. M.

R. M. Lynden-Bell, A. I. Frolov, and M. V. Fedorov, Phys. Chem. Chem. Phys. 14, 2693 (2012).
[CrossRef]

Mak, K. F.

L. M. Malard, K. F. Mak, A. H. C. Neto, N. M. R. Peres, and T. F. Heinz, New J. Phys. 15, 015009 (2013).
[CrossRef]

Malard, L. M.

L. M. Malard, K. F. Mak, A. H. C. Neto, N. M. R. Peres, and T. F. Heinz, New J. Phys. 15, 015009 (2013).
[CrossRef]

Mohr, C.

Neto, A. H. C.

L. M. Malard, K. F. Mak, A. H. C. Neto, N. M. R. Peres, and T. F. Heinz, New J. Phys. 15, 015009 (2013).
[CrossRef]

Ozharar, S.

Peres, N. M. R.

L. M. Malard, K. F. Mak, A. H. C. Neto, N. M. R. Peres, and T. F. Heinz, New J. Phys. 15, 015009 (2013).
[CrossRef]

Petrov, V.

Pince, E.

Polat, E. O.

E. O. Polat and C. Kocabas, Nano Lett. 13, 5851 (2013).
[CrossRef]

Rotermund, F.

Sasisanker, P.

M.-M. Huang, Y. Jiang, P. Sasisanker, G. W. Driver, and H. Weingärtner, J. Chem. Eng. Data 56, 1494 (2011).
[CrossRef]

Schibli, T. R.

Sennaroglu, A.

Sun, Z.

Z. Sun, T. Hasan, and A. C. Ferrari, Physica E 44, 1082 (2012).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photonics 4, 611 (2010).
[CrossRef]

Suzuki, S.

Weingärtner, H.

M.-M. Huang, Y. Jiang, P. Sasisanker, G. W. Driver, and H. Weingärtner, J. Chem. Eng. Data 56, 1494 (2011).
[CrossRef]

Xie, W.

Yeom, D.-I.

H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, Appl. Phys. Express 5, 032701 (2012).
[CrossRef]

Appl. Phys. Express (1)

H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, Appl. Phys. Express 5, 032701 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Sennaroglu, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, IEEE J. Quantum Electron. 40, 519 (2004).
[CrossRef]

J. Chem. Eng. Data (1)

M.-M. Huang, Y. Jiang, P. Sasisanker, G. W. Driver, and H. Weingärtner, J. Chem. Eng. Data 56, 1494 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

E. O. Polat and C. Kocabas, Nano Lett. 13, 5851 (2013).
[CrossRef]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photonics 4, 611 (2010).
[CrossRef]

New J. Phys. (1)

L. M. Malard, K. F. Mak, A. H. C. Neto, N. M. R. Peres, and T. F. Heinz, New J. Phys. 15, 015009 (2013).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Chem. Chem. Phys. (1)

R. M. Lynden-Bell, A. I. Frolov, and M. V. Fedorov, Phys. Chem. Chem. Phys. 14, 2693 (2012).
[CrossRef]

Physica E (1)

Z. Sun, T. Hasan, and A. C. Ferrari, Physica E 44, 1082 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic of the VCG-SA based on the supercapacitor structure. Schematic representation of the band structure of (b) unbiased (V=0) and (c) biased (V0) graphene, where V is the applied bias voltage, EP is the photon energy, EF is the Fermi energy, and CB and VB are the conduction and valance bands, respectively.

Fig. 2.
Fig. 2.

(a) Variation of the normalized change of the optical transmission of the graphene as a function of the wavelength at different bias voltages in the 0–3V range. (b) Measured variation of the fractional change in the optical transmission as a function of the bias voltage at the wavelengths of 950, 1064, and 1200 nm. (c) Estimated Fermi level shift of the device as a function of the bias voltage.

Fig. 3.
Fig. 3.

(a) Ultrafast response of the graphene-based supercapacitor at the probe wavelength of 1250 nm for different bias voltages. (b) Measured change of the optical transmission as a function of the incident light fluence at 700 nm. (c) Measured variation of the saturation fluence and modulation depth at 1250 nm as a function of the bias voltage.

Fig. 4.
Fig. 4.

Experimental setup of the multipass-cavity Cr4+:forsterite laser mode-locked with the VCG-SA.

Fig. 5.
Fig. 5.

Efficiency curve of the laser with and without the VCG sample.

Fig. 6.
Fig. 6.

(a) Measured change of the output power of the Cr4+:forsterite laser as a function of the applied voltage at the pump power of 7.1 W. (b) Estimated single pass optical insertion loss of the VCG-SA at different bias voltages.

Fig. 7.
Fig. 7.

(a)–(c) Spectrum, autocorrelation trace, and RF spectrum (1 kHz resolution bandwidth) of the generated pulses at 1256 nm at the bias voltage of 0.5 V.

Fig. 8.
Fig. 8.

(a)–(c) Spectrum, autocorrelation trace, and RF spectrum (1 kHz resolution bandwidth) of the generated pulses at 1255 nm at the bias voltage of 1 V. The pulse repetition frequency of the mode-locked oscillator was 4.51 MHz.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EF=νFπn,

Metrics