Abstract

A new simultaneous three-dimensional (3D) displacement measurement technique based on the combination of digital holography (DH) and digital imaging correlation (DIC) is proposed. The current DH-based 3D displacement measurement technique needs three sets of DH setups, and only the phase images are utilized in measurements, with all the intensity images discarded. In contrast, the proposed new technique only adopts a single off-axis DH setup. In the proposed technique, the phase images are used to extract out-of-plane displacements, but the intensity images (instead of being discarded) are processed by an intensity correlation algorithm to retrieve in-plane displacement components. Because the proposed technique fully takes advantage of all the information obtained by an off-axis DH without additional optical arrangements, it is simpler and more practical than the existing DH-based 3D displacement measurement technique. Experiments performed on a United States Air Force (USAF) target demonstrate that both the in-plane and out-of-plane displacements can be accurately determined by the proposed technique.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars, J. Opt. Soc. Am. A 11, 2011 (1994).
    [CrossRef]
  2. E. Cuche, F. Bevilacqua, and C. Depeursinge, Opt. Lett. 24, 291 (1999).
    [CrossRef]
  3. L. Xu, X. Y. Peng, J. M. Miao, and A. K. Asundi, Appl. Opt. 40, 5046 (2001).
    [CrossRef]
  4. Y. Hao and A. Asundi, Opt. Lett. 38, 1194 (2013).
    [CrossRef]
  5. R. Kulkarni and P. Rastogi, Opt. Express 22, 8703 (2014).
    [CrossRef]
  6. L. Felipe-Sese, P. Siegmann, F. A. Diaz, and E. A. Patterson, Opt. Lasers Eng. 52, 66 (2014).
    [CrossRef]
  7. Y. Morimoto, T. Matui, M. Fujigaki, and A. Matsui, Strain 44, 49 (2008).
    [CrossRef]
  8. B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, Meas. Sci. Technol. 20, 062001 (2009).
    [CrossRef]
  9. B. Pan and K. Li, Opt. Lasers Eng. 49, 841 (2011).
    [CrossRef]
  10. U. Schnars and W. P. O. Juptner, Meas. Sci. Technol. 13, R85 (2002).
    [CrossRef]
  11. B. Pan, K. Li, and W. Tong, Exp. Mech. 53, 1277 (2013).
    [CrossRef]

2014 (2)

L. Felipe-Sese, P. Siegmann, F. A. Diaz, and E. A. Patterson, Opt. Lasers Eng. 52, 66 (2014).
[CrossRef]

R. Kulkarni and P. Rastogi, Opt. Express 22, 8703 (2014).
[CrossRef]

2013 (2)

Y. Hao and A. Asundi, Opt. Lett. 38, 1194 (2013).
[CrossRef]

B. Pan, K. Li, and W. Tong, Exp. Mech. 53, 1277 (2013).
[CrossRef]

2011 (1)

B. Pan and K. Li, Opt. Lasers Eng. 49, 841 (2011).
[CrossRef]

2009 (1)

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, Meas. Sci. Technol. 20, 062001 (2009).
[CrossRef]

2008 (1)

Y. Morimoto, T. Matui, M. Fujigaki, and A. Matsui, Strain 44, 49 (2008).
[CrossRef]

2002 (1)

U. Schnars and W. P. O. Juptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

2001 (1)

1999 (1)

1994 (1)

Asundi, A.

Y. Hao and A. Asundi, Opt. Lett. 38, 1194 (2013).
[CrossRef]

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, Meas. Sci. Technol. 20, 062001 (2009).
[CrossRef]

Asundi, A. K.

Bevilacqua, F.

Cuche, E.

Depeursinge, C.

Diaz, F. A.

L. Felipe-Sese, P. Siegmann, F. A. Diaz, and E. A. Patterson, Opt. Lasers Eng. 52, 66 (2014).
[CrossRef]

Felipe-Sese, L.

L. Felipe-Sese, P. Siegmann, F. A. Diaz, and E. A. Patterson, Opt. Lasers Eng. 52, 66 (2014).
[CrossRef]

Fujigaki, M.

Y. Morimoto, T. Matui, M. Fujigaki, and A. Matsui, Strain 44, 49 (2008).
[CrossRef]

Hao, Y.

Juptner, W. P. O.

U. Schnars and W. P. O. Juptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

Kulkarni, R.

Li, K.

B. Pan, K. Li, and W. Tong, Exp. Mech. 53, 1277 (2013).
[CrossRef]

B. Pan and K. Li, Opt. Lasers Eng. 49, 841 (2011).
[CrossRef]

Matsui, A.

Y. Morimoto, T. Matui, M. Fujigaki, and A. Matsui, Strain 44, 49 (2008).
[CrossRef]

Matui, T.

Y. Morimoto, T. Matui, M. Fujigaki, and A. Matsui, Strain 44, 49 (2008).
[CrossRef]

Miao, J. M.

Morimoto, Y.

Y. Morimoto, T. Matui, M. Fujigaki, and A. Matsui, Strain 44, 49 (2008).
[CrossRef]

Pan, B.

B. Pan, K. Li, and W. Tong, Exp. Mech. 53, 1277 (2013).
[CrossRef]

B. Pan and K. Li, Opt. Lasers Eng. 49, 841 (2011).
[CrossRef]

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, Meas. Sci. Technol. 20, 062001 (2009).
[CrossRef]

Patterson, E. A.

L. Felipe-Sese, P. Siegmann, F. A. Diaz, and E. A. Patterson, Opt. Lasers Eng. 52, 66 (2014).
[CrossRef]

Peng, X. Y.

Qian, K. M.

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, Meas. Sci. Technol. 20, 062001 (2009).
[CrossRef]

Rastogi, P.

Schnars, U.

U. Schnars and W. P. O. Juptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

U. Schnars, J. Opt. Soc. Am. A 11, 2011 (1994).
[CrossRef]

Siegmann, P.

L. Felipe-Sese, P. Siegmann, F. A. Diaz, and E. A. Patterson, Opt. Lasers Eng. 52, 66 (2014).
[CrossRef]

Tong, W.

B. Pan, K. Li, and W. Tong, Exp. Mech. 53, 1277 (2013).
[CrossRef]

Xie, H. M.

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, Meas. Sci. Technol. 20, 062001 (2009).
[CrossRef]

Xu, L.

Appl. Opt. (1)

Exp. Mech. (1)

B. Pan, K. Li, and W. Tong, Exp. Mech. 53, 1277 (2013).
[CrossRef]

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (2)

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, Meas. Sci. Technol. 20, 062001 (2009).
[CrossRef]

U. Schnars and W. P. O. Juptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (2)

B. Pan and K. Li, Opt. Lasers Eng. 49, 841 (2011).
[CrossRef]

L. Felipe-Sese, P. Siegmann, F. A. Diaz, and E. A. Patterson, Opt. Lasers Eng. 52, 66 (2014).
[CrossRef]

Opt. Lett. (2)

Strain (1)

Y. Morimoto, T. Matui, M. Fujigaki, and A. Matsui, Strain 44, 49 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic showing the principles of the proposed new 3D displacement measurement technique.

Fig. 2.
Fig. 2.

In-plane displacements measured by DIC from intensity images. (a) Detected displacement vector field. (b) Measured in-plane displacements versus applied in-plane displacements. (c) Measurement error and std.

Fig. 3.
Fig. 3.

Out-of-plane displacement measurement results from phase images. (a) 3D out-of-plane displacement measured at the rotation angle of 32.57 min. (b) Measured versus applied rotation angle. (c) Measurement error and std.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ψ(m,n)=A1exp[jπλd(m2Δξ2+n2Δη2)]×FFT{IH(k,l)R(k,l)×exp[jπλd(k2Δx2+l2Δy2)]×exp[j2πλd(xξ+yη)]}m,n,
Δϕ={ϕ1ϕ2ifϕ1ϕ2ϕ1ϕ2+2πifϕ1<ϕ2.
w=λΔϕ/(4π).
CZNSSD(p)=i=MMj=MM[f(xi,yj)fmi=MMj=MM[f(xi,yj)fm]2g(xi,yj)gmi=MMj=MM[g(xi,yj)gm]2]2,

Metrics